Abstract:While Large Language Models (LLMs) excel at temporal reasoning tasks like event ordering and duration estimation, their ability to perceive the actual passage of time remains unexplored. We investigate whether LLMs perceive the passage of time and adapt their decision-making accordingly through three complementary experiments. First, we introduce the Token-Time Hypothesis, positing that LLMs can map discrete token counts to continuous wall-clock time, and validate this through a dialogue duration judgment task. Second, we demonstrate that LLMs could use this awareness to adapt their response length while maintaining accuracy when users express urgency in question answering tasks. Finally, we develop BombRush, an interactive navigation challenge that examines how LLMs modify behavior under progressive time pressure in dynamic environments. Our findings indicate that LLMs possess certain awareness of time passage, enabling them to bridge discrete linguistic tokens and continuous physical time, though this capability varies with model size and reasoning abilities. This work establishes a theoretical foundation for enhancing temporal awareness in LLMs for time-sensitive applications.
Abstract:Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.
Abstract:Recent advances in large language models (LLMs) demonstrate their impressive reasoning capabilities. However, the reasoning confined to internal parametric space limits LLMs' access to real-time information and understanding of the physical world. To overcome this constraint, we introduce SituatedThinker, a novel framework that enables LLMs to ground their reasoning in real-world contexts through situated thinking, which adaptively combines both internal knowledge and external information with predefined interfaces. By utilizing reinforcement learning, SituatedThinker incentivizes deliberate reasoning with the real world to acquire information and feedback, allowing LLMs to surpass their knowledge boundaries and enhance reasoning. Experimental results demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks. Furthermore, SituatedThinker demonstrates strong performance on unseen tasks, such as KBQA, TableQA, and text-based games, showcasing the generalizable real-world grounded reasoning capability. Our codes are available at https://github.com/jnanliu/SituatedThinker.
Abstract:Naive joint training of large language models (LLMs) for multilingual preference alignment can suffer from negative interference. This is a known issue in multilingual training, where conflicting objectives degrade overall performance. However, the impact of this phenomenon in the context of multilingual preference alignment remains largely underexplored. To address this issue, we propose CONGRAD, a scalable and effective filtering method that selects high-quality preference samples with minimal gradient conflicts across languages. Our method leverages gradient surgery to retain samples aligned with an aggregated multilingual update direction. Additionally, we incorporate a sublinear gradient compression strategy that reduces memory overhead during gradient accumulation. We integrate CONGRAD into self-rewarding framework and evaluate on LLaMA3-8B and Gemma2-2B across 10 languages. Results show that CONGRAD consistently outperforms strong baselines in both seen and unseen languages, with minimal alignment tax.
Abstract:High-quality speech dialogue datasets are crucial for Speech-LLM development, yet existing acquisition methods face significant limitations. Human recordings incur high costs and privacy concerns, while synthetic approaches often lack conversational authenticity. To address these challenges, we introduce \textsc{SpeechDialogueFactory}, a production-ready framework for generating natural speech dialogues efficiently. Our solution employs a comprehensive pipeline including metadata generation, dialogue scripting, paralinguistic-enriched utterance simulation, and natural speech synthesis with voice cloning. Additionally, the system provides an interactive UI for detailed sample inspection and a high-throughput batch synthesis mode. Evaluations show that dialogues generated by our system achieve a quality comparable to human recordings while significantly reducing production costs. We release our work as an open-source toolkit, alongside example datasets available in English and Chinese, empowering researchers and developers in Speech-LLM research and development.
Abstract:Despite achieving remarkable performance, machine translation (MT) research remains underexplored in terms of translating cultural elements in languages, such as idioms, proverbs, and colloquial expressions. This paper investigates the capability of state-of-the-art neural machine translation (NMT) and large language models (LLMs) in translating proverbs, which are deeply rooted in cultural contexts. We construct a translation dataset of standalone proverbs and proverbs in conversation for four language pairs. Our experiments show that the studied models can achieve good translation between languages with similar cultural backgrounds, and LLMs generally outperform NMT models in proverb translation. Furthermore, we find that current automatic evaluation metrics such as BLEU, CHRF++ and COMET are inadequate for reliably assessing the quality of proverb translation, highlighting the need for more culturally aware evaluation metrics.
Abstract:Large language models (LLMs) have made great progress in classification and text generation tasks. However, they are mainly trained on English data and often struggle with low-resource languages. In this study, we explore adding a new language, i.e., Persian, to Llama (a model with a limited understanding of Persian) using parameter-efficient fine-tuning. We employ a multi-stage approach involving pretraining on monolingual Persian data, aligning representations through bilingual pretraining and instruction datasets, and instruction-tuning with task-specific datasets. We evaluate the model's performance at each stage on generation and classification tasks. Our findings suggest that incorporating the Persian language, through bilingual data alignment, can enhance classification accuracy for Persian tasks, with no adverse impact and sometimes even improvements on English tasks. Additionally, the results highlight the model's initial strength as a critical factor when working with limited training data, with cross-lingual alignment offering minimal benefits for the low-resource language. Knowledge transfer from English to Persian has a marginal effect, primarily benefiting simple classification tasks.
Abstract:The performance of large language models (LLMs) in natural language processing (NLP) tasks is significantly influenced by the quality and diversity of data used for supervised fine-tuning (SFT). Current data selection methods often focus solely on quality or diversity, leading to underperforming models due to suboptimal training data. In this paper, we introduce GraphFilter, a novel method that represents the dataset as a bipartite graph, linking sentences to their constituent n-grams. This representation effectively captures the relationships between sentences and linguistic patterns, facilitating the selection of sentences that enhance n-gram diversity. To balance quality and diversity during selection, we propose a priority function that combines the quality metric with the diversity metric in a multiplicative manner. GraphFilter iteratively selects high-priority sentences, updates the bipartite graph by removing covered n-grams, and re-calculates priorities to reflect the evolving data landscape. We conduct extensive experiments using three model backbones across six widely used benchmarks. The results demonstrate that GraphFilter outperforms all nine baseline approaches, achieving superior model performance and computational efficiency. Our analyses validate the effectiveness of our design choices, examine the subsets selected by GraphFilter and other methods, highlight the importance of instruction diversity, and explore the role of quality and diversity in relation to subset sizes. GraphFilter establishes a new foundation for effective data selection strategies, encouraging further research in data selection for LLMs.
Abstract:Differentiable Search Index (DSI) utilizes Pre-trained Language Models (PLMs) for efficient document retrieval without relying on external indexes. However, DSIs need full re-training to handle updates in dynamic corpora, causing significant computational inefficiencies. We introduce PromptDSI, a rehearsal-free, prompt-based approach for instance-wise incremental learning in document retrieval. PromptDSI attaches prompts to the frozen PLM's encoder of DSI, leveraging its powerful representation to efficiently index new corpora while maintaining a balance between stability and plasticity. We eliminate the initial forward pass of prompt-based continual learning methods that doubles training and inference time. Moreover, we propose a topic-aware prompt pool that employs neural topic embeddings as fixed keys. This strategy ensures diverse and effective prompt usage, addressing the challenge of parameter underutilization caused by the collapse of the query-key matching mechanism. Our empirical evaluations demonstrate that PromptDSI matches IncDSI in managing forgetting while significantly enhancing recall by over 4% on new corpora.
Abstract:Recent advancements in multimodal large language models (MLLMs) have made significant progress in integrating information across various modalities, yet real-world applications in educational and scientific domains remain challenging. This paper introduces the Multimodal Scientific ASR (MS-ASR) task, which focuses on transcribing scientific conference videos by leveraging visual information from slides to enhance the accuracy of technical terminologies. Realized that traditional metrics like WER fall short in assessing performance accurately, prompting the proposal of severity-aware WER (SWER) that considers the content type and severity of ASR errors. We propose the Scientific Vision Augmented ASR (SciVASR) framework as a baseline method, enabling MLLMs to improve transcript quality through post-editing. Evaluations of state-of-the-art MLLMs, including GPT-4o, show a 45% improvement over speech-only baselines, highlighting the importance of multimodal information integration.