Abstract:Understanding how humans and artificial intelligence systems process complex narrative videos is a fundamental challenge at the intersection of neuroscience and machine learning. This study investigates how the temporal context length of video clips (3--12 s clips) and the narrative-task prompting shape brain-model alignment during naturalistic movie watching. Using fMRI recordings from participants viewing full-length movies, we examine how brain regions sensitive to narrative context dynamically represent information over varying timescales and how these neural patterns align with model-derived features. We find that increasing clip duration substantially improves brain alignment for multimodal large language models (MLLMs), whereas unimodal video models show little to no gain. Further, shorter temporal windows align with perceptual and early language regions, while longer windows preferentially align higher-order integrative regions, mirrored by a layer-to-cortex hierarchy in MLLMs. Finally, narrative-task prompts (multi-scene summary, narrative summary, character motivation, and event boundary detection) elicit task-specific, region-dependent brain alignment patterns and context-dependent shifts in clip-level tuning in higher-order regions. Together, our results position long-form narrative movies as a principled testbed for probing biologically relevant temporal integration and interpretable representations in long-context MLLMs.
Abstract:Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].