Abstract:Test-time scaling (TTS), which involves dynamic allocation of compute during inference, offers a promising way to improve reasoning in large language models. While existing TTS methods work well, they often rely on long decoding paths or require a large number of samples to be generated, increasing the token usage and inference latency. We observe the surprising fact that for reasoning tasks, shorter traces are much more likely to be correct than longer ones. Motivated by this, we introduce First Finish Search (FFS), a training-free parallel decoding strategy that launches $n$ independent samples and returns as soon as any one completes. We evaluate FFS alongside simple decoding, beam search, majority voting, and budget forcing on four reasoning models (DeepSeek-R1, R1-Distill-Qwen-32B, QwQ-32B and Phi-4-Reasoning-Plus) and across four datasets (AIME24, AIME25-I, AIME25-II and GPQA Diamond). With DeepSeek-R1, FFS achieves $82.23\%$ accuracy on the AIME datasets, a $15\%$ improvement over DeepSeek-R1's standalone accuracy, nearly matching OpenAI's o4-mini performance. Our theoretical analysis explains why stopping at the shortest trace is likely to yield a correct answer and identifies the conditions under which early stopping may be suboptimal. The elegance and simplicity of FFS demonstrate that straightforward TTS strategies can perform remarkably well, revealing the untapped potential of simple approaches at inference time.
Abstract:Knowledge distillation (KD) is a key technique for compressing large language models into smaller ones while preserving performance. Despite the recent traction of KD research, its effectiveness for smaller language models (LMs) and the mechanisms driving knowledge transfer remain underexplored. In this work, we present the first large-scale empirical and statistical analysis of KD across models ranging from 0.5B to 7B parameters on 14 complex reasoning tasks in a zero-shot setting. Our findings reveal that KD can improve the average performance of smaller models by up to $10\%$, with a peak task specific gain of $22\%$, while providing only marginal benefits ($\sim 1.3\%$) for larger models. Surprisingly, teacher performance has a minimal impact on student outcomes, while teacher task expertise impacts KD effectiveness. A correlation study indicates that smaller LMs benefit more from KD, whereas larger LMs show diminished gains. Additionally, we uncover a misalignment between improvements in student performance and reasoning fidelity, suggesting that while KD enhances accuracy, it does not always maintain the structured decision-making processes of the teacher. Our ablation study further highlights the importance of teacher signals and logit smoothing in influencing students' performance after distillation. Overall, our study offers a comprehensive empirical and statistical assessment of KD, highlighting both its benefits and trade-offs when distilling knowledge from larger to smaller LMs.
Abstract:We challenge the dominant focus on neural scaling laws and advocate for a paradigm shift toward downscaling in the development of large language models (LLMs). While scaling laws have provided critical insights into performance improvements through increasing model and dataset size, we emphasize the significant limitations of this approach, particularly in terms of computational inefficiency, environmental impact, and deployment constraints. To address these challenges, we propose a holistic framework for downscaling LLMs that seeks to maintain performance while drastically reducing resource demands. This paper outlines practical strategies for transitioning away from traditional scaling paradigms, advocating for a more sustainable, efficient, and accessible approach to LLM development.
Abstract:We introduce compression laws for language language models (LLMs). While recent scaling laws have sought to understand how LLMs scale with respect to model size, pre-training data, and computational resources, we focus on understanding how model compression affects the performance of a pre-trained LLM on downstream tasks. We empirically examine the effects of structured model compression on LLMs through over $1000$ experiments across eight models with sizes ranging from $0.5B$ to $14B$ parameters. Our findings indicate that the test cross-entropy loss increases quadratically with the compression ratio, whereas performance on downstream tasks declines only linearly. Our study emphasizes the importance of recovery fine-tuning in enhancing generation loss, showing that the test loss of compressed LLMs can improve by up to 55% with recovery fine-tuning. At higher compression ratios (up to 90%), compressed LLMs demonstrate a speed increase of 60% during inference compared to their uncompressed counterparts, compensating for the performance degradation at this level. However, for smaller models ($\le 7B$), the computational gains are limited, peaking at just 35%. We conclude that model compression can be highly beneficial for larger models, especially when a smaller model within the same computational budget is not available. These insights provide the practical guidelines for utilizing model compression techniques for adopting LLMs in real-life applications in resource-constrained settings.
Abstract:Neural scaling laws have revolutionized the design and optimization of large-scale AI models by revealing predictable relationships between model size, dataset volume, and computational resources. Early research established power-law relationships in model performance, leading to compute-optimal scaling strategies. However, recent studies highlighted their limitations across architectures, modalities, and deployment contexts. Sparse models, mixture-of-experts, retrieval-augmented learning, and multimodal models often deviate from traditional scaling patterns. Moreover, scaling behaviors vary across domains such as vision, reinforcement learning, and fine-tuning, underscoring the need for more nuanced approaches. In this survey, we synthesize insights from over 50 studies, examining the theoretical foundations, empirical findings, and practical implications of scaling laws. We also explore key challenges, including data efficiency, inference scaling, and architecture-specific constraints, advocating for adaptive scaling strategies tailored to real-world applications. We suggest that while scaling laws provide a useful guide, they do not always generalize across all architectures and training strategies.
Abstract:The ever-increasing size of large language models (LLMs) presents significant challenges for deployment due to their heavy computational and memory requirements. Current model pruning techniques attempt to alleviate these issues by relying heavily on external calibration datasets to determine which parameters to prune or compress, thus limiting their flexibility and scalability across different compression ratios. Moreover, these methods often cause severe performance degradation, particularly in downstream tasks, when subjected to higher compression rates. In this paper, we propose PruneNet, a novel model compression method that addresses these limitations by reformulating model pruning as a policy learning process. PruneNet decouples the pruning process from the model architecture, eliminating the need for calibration datasets. It learns a stochastic pruning policy to assess parameter importance solely based on intrinsic model properties while preserving the spectral structure to minimize information loss. PruneNet can compress the LLaMA-2-7B model in just 15 minutes, achieving over 80% retention of its zero-shot performance with a 30% compression ratio, outperforming existing methods that retain only 75% performance. Furthermore, on complex multitask language understanding tasks, PruneNet demonstrates its robustness by preserving up to 80% performance of the original model, proving itself a superior alternative to conventional structured compression techniques.
Abstract:Large Language Models (LLMs) are highly resource-intensive to fine-tune due to their enormous size. While low-rank adaptation is a prominent parameter-efficient fine-tuning approach, it suffers from sensitivity to hyperparameter choices, leading to instability in model performance on fine-tuning downstream tasks. This paper highlights the importance of effective parameterization in low-rank fine-tuning to reduce estimator variance and enhance the stability of final model outputs. We propose MonteCLoRA, an efficient fine-tuning technique, employing Monte Carlo estimation to learn an unbiased posterior estimation of low-rank parameters with low expected variance, which stabilizes fine-tuned LLMs with only O(1) additional parameters. MonteCLoRA shows significant improvements in accuracy and robustness, achieving up to 3.8% higher accuracy and 8.6% greater robustness than existing efficient fine-tuning methods on natural language understanding tasks with pre-trained RoBERTa-base. Furthermore, in generative tasks with pre-trained LLaMA-1-7B, MonteCLoRA demonstrates robust zero-shot performance with 50% lower variance than the contemporary efficient fine-tuning methods. The theoretical and empirical results presented in the paper underscore how parameterization and hyperpriors balance exploration-exploitation in the low-rank parametric space, therefore leading to more optimal and robust parameter estimation during efficient fine-tuning.
Abstract:Fine-tuning large language models (LLMs) on downstream tasks requires substantial computational resources. A class of parameter-efficient fine-tuning (PEFT) aims to mitigate these computational challenges by selectively fine-tuning only a small fraction of the model parameters. Although computationally efficient, these techniques often fail to match the performance of fully fine-tuned models, primarily due to inherent biases introduced during parameter selection. Traditional selective PEFT techniques use a fixed set of parameters based on a predefined budget (a process also known as unmasking), failing to capture parameter importance dynamically and often ending up exceeding the budget. We introduce $\text{ID}^3$, a novel selective PEFT method that calculates parameter importance continually and dynamically unmasks parameters by balancing exploration and exploitation in parameter selection. Our empirical study on 15 tasks spanning natural language understanding and generative tasks demonstrates the effectiveness of our method compared to fixed-masking-based PEFT techniques. We analytically show that $\text{ID}^3$ reduces the number of gradient updates by a factor of two, enhancing computational efficiency. $\text{ID}^3$ is robust to random initialization of neurons and, therefore, can be seamlessly integrated into existing additive and reparametrization-based PEFT modules such as adapters and LoRA for dynamic sparsification.
Abstract:Multi-head self-attention-based Transformers have shown promise in different learning tasks. Albeit these models exhibit significant improvement in understanding short-term and long-term contexts from sequences, encoders of Transformers and their variants fail to preserve layer-wise contextual information. Transformers usually project tokens onto sparse manifolds and fail to preserve mathematical equivalence among the token representations. In this work, we propose TransJect, an encoder model that guarantees a theoretical bound for layer-wise distance preservation between a pair of tokens. We propose a simple alternative to dot-product attention to ensure Lipschitz continuity. This allows TransJect to learn injective mappings to transform token representations to different manifolds with similar topology and preserve Euclidean distance between every pair of tokens in subsequent layers. Evaluations across multiple benchmark short- and long-sequence classification tasks show maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers. Additionally, TransJect displays 79% better performance than Transformer on the language modeling task. We further highlight the shortcomings of multi-head self-attention from the statistical physics viewpoint. Although multi-head self-attention was incepted to learn different abstraction levels within the networks, our empirical analyses suggest that different attention heads learn randomly and unorderly. In contrast, TransJect adapts a mixture of experts for regularization; these experts are more orderly and balanced and learn different sparse representations from the input sequences. TransJect exhibits very low entropy and can be efficiently scaled to larger depths.
Abstract:Code-mixing and script-mixing are prevalent across online social networks and multilingual societies. However, a user's preference toward code-mixing depends on the socioeconomic status, demographics of the user, and the local context, which existing generative models mostly ignore while generating code-mixed texts. In this work, we make a pioneering attempt to develop a persona-aware generative model to generate texts resembling real-life code-mixed texts of individuals. We propose a Persona-aware Generative Model for Code-mixed Generation, PARADOX, a novel Transformer-based encoder-decoder model that encodes an utterance conditioned on a user's persona and generates code-mixed texts without monolingual reference data. We propose an alignment module that re-calibrates the generated sequence to resemble real-life code-mixed texts. PARADOX generates code-mixed texts that are semantically more meaningful and linguistically more valid. To evaluate the personification capabilities of PARADOX, we propose four new metrics -- CM BLEU, CM Rouge-1, CM Rouge-L and CM KS. On average, PARADOX achieves 1.6 points better CM BLEU, 47% better perplexity and 32% better semantic coherence than the non-persona-based counterparts.