Alert button
Picture for Susan M. Resnick

Susan M. Resnick

Alert button

from the iSTAGING consortium, for the ADNI

Predicting Age from White Matter Diffusivity with Residual Learning

Add code
Bookmark button
Alert button
Nov 06, 2023
Chenyu Gao, Michael E. Kim, Ho Hin Lee, Qi Yang, Nazirah Mohd Khairi, Praitayini Kanakaraj, Nancy R. Newlin, Derek B. Archer, Angela L. Jefferson, Warren D. Taylor, Brian D. Boyd, Lori L. Beason-Held, Susan M. Resnick, The BIOCARD Study Team, Yuankai Huo, Katherine D. Van Schaik, Kurt G. Schilling, Daniel Moyer, Ivana Išgum, Bennett A. Landman

Figure 1 for Predicting Age from White Matter Diffusivity with Residual Learning
Figure 2 for Predicting Age from White Matter Diffusivity with Residual Learning
Figure 3 for Predicting Age from White Matter Diffusivity with Residual Learning
Figure 4 for Predicting Age from White Matter Diffusivity with Residual Learning
Viaarxiv icon

Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee

Add code
Bookmark button
Alert button
Apr 13, 2023
Peiyu Duan, Yuan Xue, Shuo Han, Lianrui Zuo, Aaron Carass, Caitlyn Bernhard, Savannah Hays, Peter A. Calabresi, Susan M. Resnick, James S. Duncan, Jerry L. Prince

Figure 1 for Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee
Figure 2 for Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee
Figure 3 for Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee
Figure 4 for Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee
Viaarxiv icon

Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering

Add code
Bookmark button
Alert button
Jan 25, 2023
Zhijian Yang, Junhao Wen, Ahmed Abdulkadir, Yuhan Cui, Guray Erus, Elizabeth Mamourian, Randa Melhem, Dhivya Srinivasan, Sindhuja T. Govindarajan, Jiong Chen, Mohamad Habes, Colin L. Masters, Paul Maruff, Jurgen Fripp, Luigi Ferrucci, Marilyn S. Albert, Sterling C. Johnson, John C. Morris, Pamela LaMontagne, Daniel S. Marcus, Tammie L. S. Benzinger, David A. Wolk, Li Shen, Jingxuan Bao, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos

Figure 1 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Figure 2 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Figure 3 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Viaarxiv icon

HACA3: A Unified Approach for Multi-site MR Image Harmonization

Add code
Bookmark button
Alert button
Dec 12, 2022
Lianrui Zuo, Yihao Liu, Yuan Xue, Blake E. Dewey, Murat Bilgel, Ellen M. Mowry, Scott D. Newsome, Peter A. Calabresi, Susan M. Resnick, Jerry L. Prince, Aaron Carass

Figure 1 for HACA3: A Unified Approach for Multi-site MR Image Harmonization
Figure 2 for HACA3: A Unified Approach for Multi-site MR Image Harmonization
Figure 3 for HACA3: A Unified Approach for Multi-site MR Image Harmonization
Figure 4 for HACA3: A Unified Approach for Multi-site MR Image Harmonization
Viaarxiv icon

Disentangling A Single MR Modality

Add code
Bookmark button
Alert button
May 10, 2022
Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, Murat Bilgel, Susan M. Resnick, Jerry L. Prince, Aaron Carass

Figure 1 for Disentangling A Single MR Modality
Figure 2 for Disentangling A Single MR Modality
Figure 3 for Disentangling A Single MR Modality
Figure 4 for Disentangling A Single MR Modality
Viaarxiv icon

Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics

Add code
Bookmark button
Alert button
Oct 25, 2021
Junhao Wen, Cynthia H. Y. Fu, Duygu Tosun, Yogasudha Veturi, Zhijian Yang, Ahmed Abdulkadir, Elizabeth Mamourian, Dhivya Srinivasan, Jingxuan Bao, Guray Erus, Haochang Shou, Mohamad Habes, Jimit Doshi, Erdem Varol, Scott R Mackin, Aristeidis Sotiras, Yong Fan, Andrew J. Saykin, Yvette I. Sheline, Li Shen, Marylyn D. Ritchie, David A. Wolk, Marilyn Albert, Susan M. Resnick, Christos Davatzikos

Figure 1 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 2 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 3 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 4 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Viaarxiv icon

Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning

Add code
Bookmark button
Alert button
Sep 08, 2021
Gyujoon Hwang, Ahmed Abdulkadir, Guray Erus, Mohamad Habes, Raymond Pomponio, Haochang Shou, Jimit Doshi, Elizabeth Mamourian, Tanweer Rashid, Murat Bilgel, Yong Fan, Aristeidis Sotiras, Dhivya Srinivasan, John C. Morris, Daniel Marcus, Marilyn S. Albert, Nick R. Bryan, Susan M. Resnick, Ilya M. Nasrallah, Christos Davatzikos, David A. Wolk

Figure 1 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 2 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 3 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 4 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Viaarxiv icon

Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease

Add code
Bookmark button
Alert button
Feb 24, 2021
Zhijian Yang, Ilya M. Nasrallah, Haochang Shou, Junhao Wen, Jimit Doshi, Mohamad Habes, Guray Erus, Ahmed Abdulkadir, Susan M. Resnick, David Wolk, Christos Davatzikos

Figure 1 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 2 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 3 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 4 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Viaarxiv icon

Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging

Add code
Bookmark button
Alert button
Oct 11, 2020
Vishnu M. Bashyam, Jimit Doshi, Guray Erus, Dhivya Srinivasan, Ahmed Abdulkadir, Mohamad Habes, Yong Fan, Colin L. Masters, Paul Maruff, Chuanjun Zhuo, Henry Völzke, Sterling C. Johnson, Jurgen Fripp, Nikolaos Koutsouleris, Theodore D. Satterthwaite, Daniel H. Wolf, Raquel E. Gur, Ruben C. Gur, John C. Morris, Marilyn S. Albert, Hans J. Grabe, Susan M. Resnick, R. Nick Bryan, David A. Wolk, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos

Figure 1 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 2 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 3 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 4 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Viaarxiv icon

3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles

Add code
Bookmark button
Alert button
Mar 28, 2019
Yuankai Huo, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman

Figure 1 for 3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles
Figure 2 for 3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles
Figure 3 for 3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles
Figure 4 for 3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles
Viaarxiv icon