Alert button
Picture for Steven Arthur

Steven Arthur

Alert button

AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages

May 11, 2023
Odunayo Ogundepo, Tajuddeen R. Gwadabe, Clara E. Rivera, Jonathan H. Clark, Sebastian Ruder, David Ifeoluwa Adelani, Bonaventure F. P. Dossou, Abdou Aziz DIOP, Claytone Sikasote, Gilles Hacheme, Happy Buzaaba, Ignatius Ezeani, Rooweither Mabuya, Salomey Osei, Chris Emezue, Albert Njoroge Kahira, Shamsuddeen H. Muhammad, Akintunde Oladipo, Abraham Toluwase Owodunni, Atnafu Lambebo Tonja, Iyanuoluwa Shode, Akari Asai, Tunde Oluwaseyi Ajayi, Clemencia Siro, Steven Arthur, Mofetoluwa Adeyemi, Orevaoghene Ahia, Aremu Anuoluwapo, Oyinkansola Awosan, Chiamaka Chukwuneke, Bernard Opoku, Awokoya Ayodele, Verrah Otiende, Christine Mwase, Boyd Sinkala, Andre Niyongabo Rubungo, Daniel A. Ajisafe, Emeka Felix Onwuegbuzia, Habib Mbow, Emile Niyomutabazi, Eunice Mukonde, Falalu Ibrahim Lawan, Ibrahim Said Ahmad, Jesujoba O. Alabi, Martin Namukombo, Mbonu Chinedu, Mofya Phiri, Neo Putini, Ndumiso Mngoma, Priscilla A. Amuok, Ruqayya Nasir Iro, Sonia Adhiambo

Figure 1 for AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
Figure 2 for AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
Figure 3 for AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
Figure 4 for AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

Viaarxiv icon

AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages

Feb 17, 2023
Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, Nedjma Ousidhoum, David Ifeoluwa Adelani, Seid Muhie Yimam, Ibrahim Sa'id Ahmad, Meriem Beloucif, Saif Mohammad, Sebastian Ruder, Oumaima Hourrane, Pavel Brazdil, Felermino Dário Mário António Ali, Davis Davis, Salomey Osei, Bello Shehu Bello, Falalu Ibrahim, Tajuddeen Gwadabe, Samuel Rutunda, Tadesse Belay, Wendimu Baye Messelle, Hailu Beshada Balcha, Sisay Adugna Chala, Hagos Tesfahun Gebremichael, Bernard Opoku, Steven Arthur

Figure 1 for AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages
Figure 2 for AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages
Figure 3 for AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages
Figure 4 for AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages

Africa is home to over 2000 languages from over six language families and has the highest linguistic diversity among all continents. This includes 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial in enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, which consists of 14 sentiment datasets of 110,000+ tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a) from four language families annotated by native speakers. The data is used in SemEval 2023 Task 12, the first Afro-centric SemEval shared task. We describe the data collection methodology, annotation process, and related challenges when curating each of the datasets. We conduct experiments with different sentiment classification baselines and discuss their usefulness. We hope AfriSenti enables new work on under-represented languages. The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023 and can also be loaded as a huggingface datasets (https://huggingface.co/datasets/shmuhammad/AfriSenti).

* 15 pages, 6 Figures, 9 Tables 
Viaarxiv icon