Abstract:Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Abstract:Video captioning models convert frames into visual tokens and generate descriptions with large language models (LLMs). Since encoding all frames is prohibitively expensive, uniform sampling is the default choice, but it enforces equal temporal coverage while ignoring the uneven events distribution. This motivates a Learnable Frame Selector (LFS) that selects temporally diverse and event-relevant frames. LFS explicitly models temporal importance to balance temporal diversity and event relevance, and employs a stratified strategy to ensure temporal coverage while avoiding clustering. Crucially, LFS leverages caption feedback from frozen video-LLMs to learn frame selection that directly optimizes downstream caption quality. Additionally, we identify the gap between existing benchmark and human's cognition. Thus, we introduce ICH-CC built from carefully designed questions by annotators that reflect human-consistent understanding of video. Experiments indicate that LFS consistently improves detailed video captioning across two representative community benchmarks and ICH-CC, achieving up to 2.0% gains on VDC and over 4% gains on ICH-CC. Moreover, we observe that enhanced captions with LFS leads to improved performance on video question answering. Overall, LFS provides an effective and easy-to-integrate solution for detailed video captioning.
Abstract:In the information and communications technology (ICT) industry, training a domain-specific large language model (LLM) or constructing a retrieval-augmented generation system requires a substantial amount of high-value domain knowledge. However, the knowledge is not only hidden in the textual modality but also in the image modality. Traditional methods can parse text from domain documents but dont have image captioning ability. Multi-modal LLM (MLLM) can understand images, but they do not have sufficient domain knowledge. To address the above issues, this paper proposes a multi-stage progressive training strategy to train a Domain-specific Image Captioning Model (DICModel) in ICT, and constructs a standard evaluation system to validate the performance of DICModel. Specifically, this work first synthesizes about 7K image-text pairs by combining the Mermaid tool and LLMs, which are used for the first-stage supervised-fine-tuning (SFT) of DICModel. Then, ICT-domain experts manually annotate about 2K image-text pairs for the second-stage SFT of DICModel. Finally, experts and LLMs jointly synthesize about 1.5K visual question answering data for the instruction-based SFT. Experimental results indicate that our DICModel with only 7B parameters performs better than other state-of-the-art models with 32B parameters. Compared to the SOTA models with 7B and 32B parameters, our DICModel increases the BLEU metric by approximately 56.8% and 20.8%, respectively. On the objective questions constructed by ICT domain experts, our DICModel outperforms Qwen2.5-VL 32B by 1% in terms of accuracy rate. In summary, this work can efficiently and accurately extract the logical text from images, which is expected to promote the development of multimodal models in the ICT domain.
Abstract:Domain-specific large language models (LLMs), typically developed by fine-tuning a pre-trained general-purpose LLM on specialized datasets, represent a significant advancement in applied AI. A common strategy in LLM fine-tuning is curriculum learning, which pre-orders training samples based on metrics like difficulty to improve learning efficiency compared to a random sampling strategy. However, most existing methods for LLM fine-tuning rely on a static curriculum, designed prior to training, which lacks adaptability to the model's evolving needs during fine-tuning. To address this, we propose EDCO, a novel framework based on two key concepts: inference entropy and dynamic curriculum orchestration. Inspired by recent findings that maintaining high answer entropy benefits long-term reasoning gains, EDCO prioritizes samples with high inference entropy in a continuously adapted curriculum. EDCO integrates three core components: an efficient entropy estimator that uses prefix tokens to approximate full-sequence entropy, an entropy-based curriculum generator that selects data points with the highest inference entropy, and an LLM trainer that optimizes the model on the selected curriculum. Comprehensive experiments in communication, medicine and law domains, EDCO outperforms traditional curriculum strategies for fine-tuning Qwen3-4B and Llama3.2-3B models under supervised and reinforcement learning settings. Furthermore, the proposed efficient entropy estimation reduces computational time by 83.5% while maintaining high accuracy.