Abstract:We present an extensible user simulation toolkit to facilitate automatic evaluation of conversational recommender systems. It builds on an established agenda-based approach and extends it with several novel elements, including user satisfaction prediction, persona and context modeling, and conditional natural language generation. We showcase the toolkit with a pre-existing movie recommender system and demonstrate its ability to simulate dialogues that mimic real conversations, while requiring only a handful of manually annotated dialogues as training data.
Abstract:Towards human-like dialogue systems, current emotional dialogue approaches jointly model emotion and semantics with a unified neural network. This strategy tends to generate safe responses due to the mutual restriction between emotion and semantics, and requires rare emotion-annotated large-scale dialogue corpus. Inspired by the "think twice" behavior in human dialogue, we propose a two-stage conversational agent for the generation of emotional dialogue. Firstly, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics. Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis. Experimental results on the DailyDialog and EmpatheticDialogues datasets demonstrate that the proposed conversational outperforms the comparison models in emotion generation and maintains the semantic performance in automatic and human evaluations.
Abstract:We present the first openly available multimodal metaphor annotated corpus. The corpus consists of videos including audio and subtitles that have been annotated by experts. Furthermore, we present a method for detecting metaphors in the new dataset based on the textual content of the videos. The method achieves a high F1-score (62\%) for metaphorical labels. We also experiment with other modalities and multimodal methods; however, these methods did not out-perform the text-based model. In our error analysis, we do identify that there are cases where video could help in disambiguating metaphors, however, the visual cues are too subtle for our model to capture. The data is available on Zenodo.
Abstract:Biological functions of RNAs are determined by their three-dimensional (3D) structures. Thus, given the limited number of experimentally determined RNA structures, the prediction of RNA structures will facilitate elucidating RNA functions and RNA-targeted drug discovery, but remains a challenging task. In this work, we propose a Graph Neural Network (GNN)-based scoring function trained only with the atomic types and coordinates on limited solved RNA 3D structures for distinguishing accurate structural models. The proposed Physics-aware Multiplex Graph Neural Network (PaxNet) separately models the local and non-local interactions inspired by molecular mechanics. Furthermore, PaxNet contains an attention-based fusion module that learns the individual contribution of each interaction type for the final prediction. We rigorously evaluate the performance of PaxNet on two benchmarks and compare it with several state-of-the-art baselines. The results show that PaxNet significantly outperforms all the baselines overall, and demonstrate the potential of PaxNet for improving the 3D structure modeling of RNA and other macromolecules.
Abstract:Existing approaches to constructing training data for Natural Language Inference (NLI) tasks, such as for semi-structured table reasoning, are either via crowdsourcing or fully automatic methods. However, the former is expensive and time-consuming and thus limits scale, and the latter often produces naive examples that may lack complex reasoning. This paper develops a realistic semi-automated framework for data augmentation for tabular inference. Instead of manually generating a hypothesis for each table, our methodology generates hypothesis templates transferable to similar tables. In addition, our framework entails the creation of rational counterfactual tables based on human written logical constraints and premise paraphrasing. For our case study, we use the InfoTabs, which is an entity-centric tabular inference dataset. We observed that our framework could generate human-like tabular inference examples, which could benefit training data augmentation, especially in the scenario with limited supervision.
Abstract:Training a quantum machine learning model generally requires a large labeled dataset, which incurs high labeling and computational costs. To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn while maintaining the trained model's performance. Here, we design and implement two AL-enpowered variational quantum classifiers, to investigate the potential applications and effectiveness of AL in quantum machine learning. Firstly, we build a programmable free-space photonic quantum processor, which enables the programmed implementation of various hybrid quantum-classical computing algorithms. Then, we code the designed variational quantum classifier with AL into the quantum processor, and execute comparative tests for the classifiers with and without the AL strategy. The results validate the great advantage of AL in quantum machine learning, as it saves at most $85\%$ labeling efforts and $91.6\%$ percent computational efforts compared to the training without AL on a data classification task. Our results inspire AL's further applications in large-scale quantum machine learning to drastically reduce training data and speed up training, underpinning the exploration of practical quantum advantages in quantum physics or real-world applications.
Abstract:Variational quantum algorithms (VQAs) have emerged as a promising near-term technique to explore practical quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, the inefficient parameter training process due to the incompatibility with backpropagation and the cost of a large number of measurements, posing a great challenge to the large-scale development of VQAs. Here, we propose a parameter-parallel distributed variational quantum algorithm (PPD-VQA), to accelerate the training process by parameter-parallel training with multiple quantum processors. To maintain the high performance of PPD-VQA in the realistic noise scenarios, a alternate training strategy is proposed to alleviate the acceleration attenuation caused by noise differences among multiple quantum processors, which is an unavoidable common problem of distributed VQA. Besides, the gradient compression is also employed to overcome the potential communication bottlenecks. The achieved results suggest that the PPD-VQA could provide a practical solution for coordinating multiple quantum processors to handle large-scale real-word applications.
Abstract:Deep learning based semi-supervised learning (SSL) methods have achieved strong performance in medical image segmentation, which can alleviate doctors' expensive annotation by utilizing a large amount of unlabeled data. Unlike most existing semi-supervised learning methods, adversarial training based methods distinguish samples from different sources by learning the data distribution of the segmentation map, leading the segmenter to generate more accurate predictions. We argue that the current performance restrictions for such approaches are the problems of feature extraction and learning preference. In this paper, we propose a new semi-supervised adversarial method called Patch Confidence Adversarial Training (PCA) for medical image segmentation. Rather than single scalar classification results or pixel-level confidence maps, our proposed discriminator creates patch confidence maps and classifies them at the scale of the patches. The prediction of unlabeled data learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state and improves semi-supervised segmentation performance. Furthermore, at the discriminator's input, we supplement semantic information constraints on images, making it simpler for unlabeled data to fit the expected data distribution. Extensive experiments on the Automated Cardiac Diagnosis Challenge (ACDC) 2017 dataset and the Brain Tumor Segmentation (BraTS) 2019 challenge dataset show that our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
Abstract:Recent advances in applying Graph Neural Networks (GNNs) to molecular science have showcased the power of learning three-dimensional (3D) structure representations with GNNs. However, most existing GNNs suffer from the limitations of insufficient modeling of diverse interactions, computational expensive operations, and ignorance of vectorial values. Here, we tackle these limitations by proposing a novel GNN model, Physics-aware Multiplex Graph Neural Network (PaxNet), to efficiently and accurately learn the representations of 3D molecules for both small organic compounds and macromolecule complexes. PaxNet separates the modeling of local and non-local interactions inspired by molecular mechanics, and reduces the expensive angle-related computations. Besides scalar properties, PaxNet can also predict vectorial properties by learning an associated vector for each atom. To evaluate the performance of PaxNet, we compare it with state-of-the-art baselines in two tasks. On small molecule dataset for predicting quantum chemical properties, PaxNet reduces the prediction error by 15% and uses 73% less memory than the best baseline. On macromolecule dataset for predicting protein-ligand binding affinities, PaxNet outperforms the best baseline while reducing the memory consumption by 33% and the inference time by 85%. Thus, PaxNet provides a universal, robust and accurate method for large-scale machine learning of molecules.
Abstract:The Light Field Raindrop Removal (LFRR) aims to restore the background areas obscured by raindrops in the Light Field (LF). Compared with single image, the LF provides more abundant information by regularly and densely sampling the scene. Since raindrops have larger disparities than the background in the LF, the majority of texture details occluded by raindrops are visible in other views. In this paper, we propose a novel LFRR network by directly utilizing the complementary pixel information of raindrop-free areas in the input raindrop LF, which consists of the re-sampling module and the refinement module. Specifically, the re-sampling module generates a new LF which is less polluted by raindrops through re-sampling position predictions and the proposed 4D interpolation. The refinement module improves the restoration of the completely occluded background areas and corrects the pixel error caused by 4D interpolation. Furthermore, we carefully build the first real scene LFRR dataset for model training and validation. Experiments demonstrate that the proposed method can effectively remove raindrops and achieves state-of-the-art performance in both background restoration and view consistency maintenance.