



Abstract:Medical image challenges have played a transformative role in advancing the field, catalyzing algorithmic innovation and establishing new performance standards across diverse clinical applications. Image registration, a foundational task in neuroimaging pipelines, has similarly benefited from the Learn2Reg initiative. Building on this foundation, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark designed to assess and advance unsupervised brain MRI registration. Distinct from prior challenges that leveraged anatomical label maps for supervision, LUMIR removes this dependency by providing over 4,000 preprocessed T1-weighted brain MRIs for training without any label maps, encouraging biologically plausible deformation modeling through self-supervision. In addition to evaluating performance on 590 held-out test subjects, LUMIR introduces a rigorous suite of zero-shot generalization tasks, spanning out-of-domain imaging modalities (e.g., FLAIR, T2-weighted, T2*-weighted), disease populations (e.g., Alzheimer's disease), acquisition protocols (e.g., 9.4T MRI), and species (e.g., macaque brains). A total of 1,158 subjects and over 4,000 image pairs were included for evaluation. Performance was assessed using both segmentation-based metrics (Dice coefficient, 95th percentile Hausdorff distance) and landmark-based registration accuracy (target registration error). Across both in-domain and zero-shot tasks, deep learning-based methods consistently achieved state-of-the-art accuracy while producing anatomically plausible deformation fields. The top-performing deep learning-based models demonstrated diffeomorphic properties and inverse consistency, outperforming several leading optimization-based methods, and showing strong robustness to most domain shifts, the exception being a drop in performance on out-of-domain contrasts.




Abstract:Deformable medical image registration is a crucial aspect of medical image analysis. In recent years, researchers have begun leveraging auxiliary tasks (such as supervised segmentation) to provide anatomical structure information for the primary registration task, addressing complex deformation challenges in medical image registration. In this work, we propose a multi-task learning framework based on multi-scale dual attention frequency fusion (DAFF-Net), which simultaneously achieves the segmentation masks and dense deformation fields in a single-step estimation. DAFF-Net consists of a global encoder, a segmentation decoder, and a coarse-to-fine pyramid registration decoder. During the registration decoding process, we design the dual attention frequency feature fusion (DAFF) module to fuse registration and segmentation features at different scales, fully leveraging the correlation between the two tasks. The DAFF module optimizes the features through global and local weighting mechanisms. During local weighting, it incorporates both high-frequency and low-frequency information to further capture the features that are critical for the registration task. With the aid of segmentation, the registration learns more precise anatomical structure information, thereby enhancing the anatomical consistency of the warped images after registration. Additionally, due to the DAFF module's outstanding ability to extract effective feature information, we extend its application to unsupervised registration. Extensive experiments on three public 3D brain magnetic resonance imaging (MRI) datasets demonstrate that the proposed DAFF-Net and its unsupervised variant outperform state-of-the-art registration methods across several evaluation metrics, demonstrating the effectiveness of our approach in deformable medical image registration.


Abstract:In this work, we propose a novel deformable convolutional pyramid network for unsupervised image registration. Specifically, the proposed network enhances the traditional pyramid network by adding an additional shared auxiliary decoder for image pairs. This decoder provides multi-scale high-level feature information from unblended image pairs for the registration task. During the registration process, we also design a multi-scale feature fusion block to extract the most beneficial features for the registration task from both global and local contexts. Validation results indicate that this method can capture complex deformations while achieving higher registration accuracy and maintaining smooth and plausible deformations.