Deep neural retrieval models have amply demonstrated their power but estimating the reliability of their predictions remains challenging. Most dialog response retrieval models output a single score for a response on how relevant it is to a given question. However, the bad calibration of deep neural network results in various uncertainty for the single score such that the unreliable predictions always misinform user decisions. To investigate these issues, we present an efficient calibration and uncertainty estimation framework PG-DRR for dialog response retrieval models which adds a Gaussian Process layer to a deterministic deep neural network and recovers conjugacy for tractable posterior inference by P\'{o}lya-Gamma augmentation. Finally, PG-DRR achieves the lowest empirical calibration error (ECE) in the in-domain datasets and the distributional shift task while keeping $R_{10}@1$ and MAP performance.
Efficient document retrieval heavily relies on the technique of semantic hashing, which learns a binary code for every document and employs Hamming distance to evaluate document distances. However, existing semantic hashing methods are mostly established on outdated TFIDF features, which obviously do not contain lots of important semantic information about documents. Furthermore, the Hamming distance can only be equal to one of several integer values, significantly limiting its representational ability for document distances. To address these issues, in this paper, we propose to leverage BERT embeddings to perform efficient retrieval based on the product quantization technique, which will assign for every document a real-valued codeword from the codebook, instead of a binary code as in semantic hashing. Specifically, we first transform the original BERT embeddings via a learnable mapping and feed the transformed embedding into a probabilistic product quantization module to output the assigned codeword. The refining and quantizing modules can be optimized in an end-to-end manner by minimizing the probabilistic contrastive loss. A mutual information maximization based method is further proposed to improve the representativeness of codewords, so that documents can be quantized more accurately. Extensive experiments conducted on three benchmarks demonstrate that our proposed method significantly outperforms current state-of-the-art baselines.
Weight pruning is among the most popular approaches for compressing deep convolutional neural networks. Recent work suggests that in a randomly initialized deep neural network, there exist sparse subnetworks that achieve performance comparable to the original network. Unfortunately, finding these subnetworks involves iterative stages of training and pruning, which can be computationally expensive. We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter. This leads to improved efficiency of convolutional architectures compared to existing methods that perform pruning at initialization. We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in ``efficient architectures.'' Extensive experiments on well-known CNN models and datasets show the effectiveness of the proposed method. Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
Pose Guided Human Image Synthesis (PGHIS) is a challenging task of transforming a human image from the reference pose to a target pose while preserving its style. Most existing methods encode the texture of the whole reference human image into a latent space, and then utilize a decoder to synthesize the image texture of the target pose. However, it is difficult to recover the detailed texture of the whole human image. To alleviate this problem, we propose a method by decoupling the human body into several parts (\eg, hair, face, hands, feet, \etc) and then using each of these parts to guide the synthesis of a realistic image of the person, which preserves the detailed information of the generated images. In addition, we design a multi-head attention-based module for PGHIS. Because most convolutional neural network-based methods have difficulty in modeling long-range dependency due to the convolutional operation, the long-range modeling capability of attention mechanism is more suitable than convolutional neural networks for pose transfer task, especially for sharp pose deformation. Extensive experiments on Market-1501 and DeepFashion datasets reveal that our method almost outperforms other existing state-of-the-art methods in terms of both qualitative and quantitative metrics.
Machine learning models (mainly neural networks) are used more and more in real life. Users feed their data to the model for training. But these processes are often one-way. Once trained, the model remembers the data. Even when data is removed from the dataset, the effects of these data persist in the model. With more and more laws and regulations around the world protecting data privacy, it becomes even more important to make models forget this data completely through machine unlearning. This paper adopts the projection residual method based on Newton iteration method. The main purpose is to implement machine unlearning tasks in the context of linear regression models and neural network models. This method mainly uses the iterative weighting method to completely forget the data and its corresponding influence, and its computational cost is linear in the feature dimension of the data. This method can improve the current machine learning method. At the same time, it is independent of the size of the training set. Results were evaluated by feature injection testing (FIT). Experiments show that this method is more thorough in deleting data, which is close to model retraining.
The extraction of sequence patterns from a collection of functionally linked unlabeled DNA sequences is known as DNA motif discovery, and it is a key task in computational biology. Several deep learning-based techniques have recently been introduced to address this issue. However, these algorithms can not be used in real-world situations because of the need for labeled data. Here, we presented RL-MD, a novel reinforcement learning based approach for DNA motif discovery task. RL-MD takes unlabelled data as input, employs a relative information-based method to evaluate each proposed motif, and utilizes these continuous evaluation results as the reward. The experiments show that RL-MD can identify high-quality motifs in real-world data.
Nonparallel multi-domain voice conversion methods such as the StarGAN-VCs have been widely applied in many scenarios. However, the training of these models usually poses a challenge due to their complicated adversarial network architectures. To address this, in this work we leverage the state-of-the-art contrastive learning techniques and incorporate an efficient Siamese network structure into the StarGAN discriminator. Our method is called SimSiam-StarGAN-VC and it boosts the training stability and effectively prevents the discriminator overfitting issue in the training process. We conduct experiments on the Voice Conversion Challenge (VCC 2018) dataset, plus a user study to validate the performance of our framework. Our experimental results show that SimSiam-StarGAN-VC significantly outperforms existing StarGAN-VC methods in terms of both the objective and subjective metrics.
Deep neural networks can capture the intricate interaction history information between queries and documents, because of their many complicated nonlinear units, allowing them to provide correct search recommendations. However, service providers frequently face more complex obstacles in real-world circumstances, such as deployment cost constraints and fairness requirements. Knowledge distillation, which transfers the knowledge of a well-trained complex model (teacher) to a simple model (student), has been proposed to alleviate the former concern, but the best current distillation methods focus only on how to make the student model imitate the predictions of the teacher model. To better facilitate the application of deep models, we propose a fair information retrieval framework based on knowledge distillation. This framework can improve the exposure-based fairness of models while considerably decreasing model size. Our extensive experiments on three huge datasets show that our proposed framework can reduce the model size to a minimum of 1% of its original size while maintaining its black-box state. It also improves fairness performance by 15%~46% while keeping a high level of recommendation effectiveness.
Although deep Neural Networks (DNNs) have achieved tremendous success in audio classification tasks, their uncertainty calibration are still under-explored. A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate. In this work, we investigate the uncertainty calibration for deep audio classifiers. In particular, we empirically study the performance of popular calibration methods: (i) Monte Carlo Dropout, (ii) ensemble, (iii) focal loss, and (iv) spectral-normalized Gaussian process (SNGP), on audio classification datasets. To this end, we evaluate (i-iv) for the tasks of environment sound and music genre classification. Results indicate that uncalibrated deep audio classifiers may be over-confident, and SNGP performs the best and is very efficient on the two datasets of this paper.