Abstract:Knots in wood are critical to both aesthetics and structural integrity, making their detection and pairing essential in timber processing. However, traditional manual annotation was labor-intensive and inefficient, necessitating automation. This paper proposes a lightweight and fully automated pipeline for knot detection and pairing based on machine learning techniques. In the detection stage, high-resolution surface images of wooden boards were collected using industrial-grade cameras, and a large-scale dataset was manually annotated and preprocessed. After the transfer learning, the YOLOv8l achieves an mAP@0.5 of 0.887. In the pairing stage, detected knots were analyzed and paired based on multidimensional feature extraction. A triplet neural network was used to map the features into a latent space, enabling clustering algorithms to identify and pair corresponding knots. The triplet network with learnable weights achieved a pairing accuracy of 0.85. Further analysis revealed that he distances from the knot's start and end points to the bottom of the wooden board, and the longitudinal coordinates play crucial roles in achieving high pairing accuracy. Our experiments validate the effectiveness of the proposed solution, demonstrating the potential of AI in advancing wood science and industry.
Abstract:This paper uses topic modeling and bias measurement techniques to analyze and determine gender bias in English song lyrics. We utilize BERTopic to cluster 537,553 English songs into distinct topics and chart their development over time. Our analysis shows the thematic shift in song lyrics over the years, from themes of romance to the increasing sexualization of women in songs. We observe large amounts of profanity and misogynistic lyrics on various topics, especially in the overall biggest cluster. Furthermore, to analyze gender bias across topics and genres, we employ the Single Category Word Embedding Association Test (SC-WEAT) to compute bias scores for the word embeddings trained on the most popular topics as well as for each genre. We find that words related to intelligence and strength tend to show a male bias across genres, as opposed to appearance and weakness words, which are more female-biased; however, a closer look also reveals differences in biases across topics.