Abstract:Biometric systems, such as face recognition systems powered by deep neural networks (DNNs), rely on large and highly sensitive datasets. Backdoor attacks can subvert these systems by manipulating the training process. By inserting a small trigger, such as a sticker, make-up, or patterned mask, into a few training images, an adversary can later present the same trigger during authentication to be falsely recognized as another individual, thereby gaining unauthorized access. Existing defense mechanisms against backdoor attacks still face challenges in precisely identifying and mitigating poisoned images without compromising data utility, which undermines the overall reliability of the system. We propose a novel and generalizable approach, TrueBiometric: Trustworthy Biometrics, which accurately detects poisoned images using a majority voting mechanism leveraging multiple state-of-the-art large vision language models. Once identified, poisoned samples are corrected using targeted and calibrated corrective noise. Our extensive empirical results demonstrate that TrueBiometric detects and corrects poisoned images with 100\% accuracy without compromising accuracy on clean images. Compared to existing state-of-the-art approaches, TrueBiometric offers a more practical, accurate, and effective solution for mitigating backdoor attacks in face recognition systems.
Abstract:As Large Language Models (LLMs) become integral to scientific workflows, concerns over the confidentiality and ethical handling of confidential data have emerged. This paper explores data exposure risks through LLM-powered scientific tools, which can inadvertently leak confidential information, including intellectual property and proprietary data, from scientists' perspectives. We propose "DataShield", a framework designed to detect confidential data leaks, summarize privacy policies, and visualize data flow, ensuring alignment with organizational policies and procedures. Our approach aims to inform scientists about data handling practices, enabling them to make informed decisions and protect sensitive information. Ongoing user studies with scientists are underway to evaluate the framework's usability, trustworthiness, and effectiveness in tackling real-world privacy challenges.
Abstract:Energy disaggregation techniques, which use smart meter data to infer appliance energy usage, can provide consumers and energy companies valuable insights into energy management. However, these techniques also present privacy risks, such as the potential for behavioral profiling. Local differential privacy (LDP) methods provide strong privacy guarantees with high efficiency in addressing privacy concerns. However, existing LDP methods focus on protecting aggregated energy consumption data rather than individual appliances. Furthermore, these methods do not consider the fact that smart meter data are a form of streaming data, and its processing methods should account for time windows. In this paper, we propose a novel LDP approach (named LDP-SmartEnergy) that utilizes randomized response techniques with sliding windows to facilitate the sharing of appliance-level energy consumption data over time while not revealing individual users' appliance usage patterns. Our evaluations show that LDP-SmartEnergy runs efficiently compared to baseline methods. The results also demonstrate that our solution strikes a balance between protecting privacy and maintaining the utility of data for effective analysis.