Abstract:Self-supervised depth estimation has gained significant attention in autonomous driving and robotics. However, existing methods exhibit substantial performance degradation under adverse weather conditions such as rain and fog, where reduced visibility critically impairs depth prediction. To address this issue, we propose a novel self-evolution contrastive learning framework called SEC-Depth for self-supervised robust depth estimation tasks. Our approach leverages intermediate parameters generated during training to construct temporally evolving latency models. Using these, we design a self-evolution contrastive scheme to mitigate performance loss under challenging conditions. Concretely, we first design a dynamic update strategy of latency models for the depth estimation task to capture optimization states across training stages. To effectively leverage latency models, we introduce a self-evolution contrastive Loss (SECL) that treats outputs from historical latency models as negative samples. This mechanism adaptively adjusts learning objectives while implicitly sensing weather degradation severity, reducing the needs for manual intervention. Experiments show that our method integrates seamlessly into diverse baseline models and significantly enhances robustness in zero-shot evaluations.
Abstract:This paper reports on the NTIRE 2025 challenge on HR Depth From images of Specular and Transparent surfaces, held in conjunction with the New Trends in Image Restoration and Enhancement (NTIRE) workshop at CVPR 2025. This challenge aims to advance the research on depth estimation, specifically to address two of the main open issues in the field: high-resolution and non-Lambertian surfaces. The challenge proposes two tracks on stereo and single-image depth estimation, attracting about 177 registered participants. In the final testing stage, 4 and 4 participating teams submitted their models and fact sheets for the two tracks.