Alert button
Picture for Shengjie Chen

Shengjie Chen

Alert button

NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results

Apr 25, 2022
Ren Yang, Radu Timofte, Meisong Zheng, Qunliang Xing, Minglang Qiao, Mai Xu, Lai Jiang, Huaida Liu, Ying Chen, Youcheng Ben, Xiao Zhou, Chen Fu, Pei Cheng, Gang Yu, Junyi Li, Renlong Wu, Zhilu Zhang, Wei Shang, Zhengyao Lv, Yunjin Chen, Mingcai Zhou, Dongwei Ren, Kai Zhang, Wangmeng Zuo, Pavel Ostyakov, Vyal Dmitry, Shakarim Soltanayev, Chervontsev Sergey, Zhussip Magauiya, Xueyi Zou, Youliang Yan, Pablo Navarrete Michelini, Yunhua Lu, Diankai Zhang, Shaoli Liu, Si Gao, Biao Wu, Chengjian Zheng, Xiaofeng Zhang, Kaidi Lu, Ning Wang, Thuong Nguyen Canh, Thong Bach, Qing Wang, Xiaopeng Sun, Haoyu Ma, Shijie Zhao, Junlin Li, Liangbin Xie, Shuwei Shi, Yujiu Yang, Xintao Wang, Jinjin Gu, Chao Dong, Xiaodi Shi, Chunmei Nian, Dong Jiang, Jucai Lin, Zhihuai Xie, Mao Ye, Dengyan Luo, Liuhan Peng, Shengjie Chen, Xin Liu, Qian Wang, Xin Liu, Boyang Liang, Hang Dong, Yuhao Huang, Kai Chen, Xingbei Guo, Yujing Sun, Huilei Wu, Pengxu Wei, Yulin Huang, Junying Chen, Ik Hyun Lee, Sunder Ali Khowaja, Jiseok Yoon

Figure 1 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Figure 2 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Figure 3 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Figure 4 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results

This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 additional videos. This challenge includes three tracks. Track 1 aims at enhancing the videos compressed by HEVC at a fixed QP. Track 2 and Track 3 target both the super-resolution and quality enhancement of HEVC compressed video. They require x2 and x4 super-resolution, respectively. The three tracks totally attract more than 600 registrations. In the test phase, 8 teams, 8 teams and 12 teams submitted the final results to Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution and quality enhancement of compressed video. The proposed LDV 2.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge (including open-sourced codes) is at https://github.com/RenYang-home/NTIRE22_VEnh_SR.

Viaarxiv icon

Augmenting Anchors by the Detector Itself

May 28, 2021
Xiaopei Wan, Shengjie Chen, Yujiu Yang, Zhenhua Guo, Fangbo Tao

Figure 1 for Augmenting Anchors by the Detector Itself
Figure 2 for Augmenting Anchors by the Detector Itself
Figure 3 for Augmenting Anchors by the Detector Itself
Figure 4 for Augmenting Anchors by the Detector Itself

It is difficult to determine the scale and aspect ratio of anchors for anchor-based object detection methods. Current state-of-the-art object detectors either determine anchor parameters according to objects' shape and scale in a dataset, or avoid this problem by utilizing anchor-free method. In this paper, we propose a gradient-free anchor augmentation method named AADI, which means Augmenting Anchors by the Detector Itself. AADI is not an anchor-free method, but it converts the scale and aspect ratio of anchors from a continuous space to a discrete space, which greatly alleviates the problem of anchors' designation. Furthermore, AADI does not add any parameters or hyper-parameters, which is beneficial for future research and downstream tasks. Extensive experiments on COCO dataset show that AADI has obvious advantages for both two-stage and single-stage methods, specifically, AADI achieves at least 2.1 AP improvements on Faster R-CNN and 1.6 AP improvements on RetinaNet, using ResNet-50 model. We hope that this simple and cost-efficient method can be widely used in object detection.

Viaarxiv icon