Abstract:Autonomous language-guided navigation in large-scale outdoor environments remains a key challenge in mobile robotics, due to difficulties in semantic reasoning, dynamic conditions, and long-term stability. We propose CausalNav, the first scene graph-based semantic navigation framework tailored for dynamic outdoor environments. We construct a multi-level semantic scene graph using LLMs, referred to as the Embodied Graph, that hierarchically integrates coarse-grained map data with fine-grained object entities. The constructed graph serves as a retrievable knowledge base for Retrieval-Augmented Generation (RAG), enabling semantic navigation and long-range planning under open-vocabulary queries. By fusing real-time perception with offline map data, the Embodied Graph supports robust navigation across varying spatial granularities in dynamic outdoor environments. Dynamic objects are explicitly handled in both the scene graph construction and hierarchical planning modules. The Embodied Graph is continuously updated within a temporal window to reflect environmental changes and support real-time semantic navigation. Extensive experiments in both simulation and real-world settings demonstrate superior robustness and efficiency.
Abstract:As the number of service robots and autonomous vehicles in human-centered environments grows, their requirements go beyond simply navigating to a destination. They must also take into account dynamic social contexts and ensure respect and comfort for others in shared spaces, which poses significant challenges for perception and planning. In this paper, we present a group-based social navigation framework GSON to enable mobile robots to perceive and exploit the social group of their surroundings by leveling the visual reasoning capability of the Large Multimodal Model (LMM). For perception, we apply visual prompting techniques to zero-shot extract the social relationship among pedestrians and combine the result with a robust pedestrian detection and tracking pipeline to alleviate the problem of low inference speed of the LMM. Given the perception result, the planning system is designed to avoid disrupting the current social structure. We adopt a social structure-based mid-level planner as a bridge between global path planning and local motion planning to preserve the global context and reactive response. The proposed method is validated on real-world mobile robot navigation tasks involving complex social structure understanding and reasoning. Experimental results demonstrate the effectiveness of the system in these scenarios compared with several baselines.