Abstract:The introduction of Integrated Sensing and Communications (ISAC) in cellular systems is not expected to result in a shift away from the popular choice of cost- and energy-efficient analog or hybrid beamforming structures. However, this comes at the cost of limiting the angular capabilities to a confined space per acquisitions. Thus, as a prerequisite for the successful implementation of numerous ISAC use cases, the need for an optimal angular estimation of targets and their separation based on the minimal number of angular samples arises. In this work, different approaches for angular estimation based on a minimal, DFT-based set of angular samples are evaluated. The samples are acquired through sweeping multiple beams of an ISAC proof of concept (PoC) in the industrial scenario of the ARENA2036. The study's findings indicate that interpolation approaches are more effective for generalizing across different types of angular scenarios. While the orthogonal matching pursuit (OMP) approach exhibits the most accurate estimation for a single, strong and clearly discriminable target, the DFT-based interpolation approach demonstrates the best overall estimation performance.
Abstract:Semantic 3D city models are worldwide easy-accessible, providing accurate, object-oriented, and semantic-rich 3D priors. To date, their potential to mitigate the noise impact on radar object detection remains under-explored. In this paper, we first introduce a unique dataset, RadarCity, comprising 54K synchronized radar-image pairs and semantic 3D city models. Moreover, we propose a novel neural network, RADLER, leveraging the effectiveness of contrastive self-supervised learning (SSL) and semantic 3D city models to enhance radar object detection of pedestrians, cyclists, and cars. Specifically, we first obtain the robust radar features via a SSL network in the radar-image pretext task. We then use a simple yet effective feature fusion strategy to incorporate semantic-depth features from semantic 3D city models. Having prior 3D information as guidance, RADLER obtains more fine-grained details to enhance radar object detection. We extensively evaluate RADLER on the collected RadarCity dataset and demonstrate average improvements of 5.46% in mean avarage precision (mAP) and 3.51% in mean avarage recall (mAR) over previous radar object detection methods. We believe this work will foster further research on semantic-guided and map-supported radar object detection. Our project page is publicly available athttps://gpp-communication.github.io/RADLER .