Abstract:The collection of large-scale and diverse robot demonstrations remains a major bottleneck for imitation learning, as real-world data acquisition is costly and simulators offer limited diversity and fidelity with pronounced sim-to-real gaps. While generative models present an attractive solution, existing methods often alter only visual appearances without creating new behaviors, or suffer from embodiment inconsistencies that yield implausible motions. To address these limitations, we introduce AnchorDream, an embodiment-aware world model that repurposes pretrained video diffusion models for robot data synthesis. AnchorDream conditions the diffusion process on robot motion renderings, anchoring the embodiment to prevent hallucination while synthesizing objects and environments consistent with the robot's kinematics. Starting from only a handful of human teleoperation demonstrations, our method scales them into large, diverse, high-quality datasets without requiring explicit environment modeling. Experiments show that the generated data leads to consistent improvements in downstream policy learning, with relative gains of 36.4% in simulator benchmarks and nearly double performance in real-world studies. These results suggest that grounding generative world models in robot motion provides a practical path toward scaling imitation learning.
Abstract:Developing efficient and accurate visuomotor policies poses a central challenge in robotic imitation learning. While recent rectified flow approaches have advanced visuomotor policy learning, they suffer from a key limitation: After iterative distillation, generated actions may deviate from the ground-truth actions corresponding to the current visual observation, leading to accumulated error as the reflow process repeats and unstable task execution. We present Selective Flow Alignment (SeFA), an efficient and accurate visuomotor policy learning framework. SeFA resolves this challenge by a selective flow alignment strategy, which leverages expert demonstrations to selectively correct generated actions and restore consistency with observations, while preserving multimodality. This design introduces a consistency correction mechanism that ensures generated actions remain observation-aligned without sacrificing the efficiency of one-step flow inference. Extensive experiments across both simulated and real-world manipulation tasks show that SeFA Policy surpasses state-of-the-art diffusion-based and flow-based policies, achieving superior accuracy and robustness while reducing inference latency by over 98%. By unifying rectified flow efficiency with observation-consistent action generation, SeFA provides a scalable and dependable solution for real-time visuomotor policy learning. Code is available on https://github.com/RongXueZoe/SeFA.