Alert button
Picture for Rick Stevens

Rick Stevens

Alert button

Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision

Add code
Bookmark button
Alert button
Feb 05, 2024
Nathaniel Hudson, J. Gregory Pauloski, Matt Baughman, Alok Kamatar, Mansi Sakarvadia, Logan Ward, Ryan Chard, André Bauer, Maksim Levental, Wenyi Wang, Will Engler, Owen Price Skelly, Ben Blaiszik, Rick Stevens, Kyle Chard, Ian Foster

Viaarxiv icon

WordScape: a Pipeline to extract multilingual, visually rich Documents with Layout Annotations from Web Crawl Data

Add code
Bookmark button
Alert button
Dec 15, 2023
Maurice Weber, Carlo Siebenschuh, Rory Butler, Anton Alexandrov, Valdemar Thanner, Georgios Tsolakis, Haris Jabbar, Ian Foster, Bo Li, Rick Stevens, Ce Zhang

Viaarxiv icon

DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies

Add code
Bookmark button
Alert button
Oct 11, 2023
Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen, Chengming Zhang, Masahiro Tanaka, Xiaoxia Wu, Jeff Rasley, Ammar Ahmad Awan, Connor Holmes, Martin Cai, Adam Ghanem, Zhongzhu Zhou, Yuxiong He, Pete Luferenko, Divya Kumar, Jonathan Weyn, Ruixiong Zhang, Sylwester Klocek, Volodymyr Vragov, Mohammed AlQuraishi, Gustaf Ahdritz, Christina Floristean, Cristina Negri, Rao Kotamarthi, Venkatram Vishwanath, Arvind Ramanathan, Sam Foreman, Kyle Hippe, Troy Arcomano, Romit Maulik, Maxim Zvyagin, Alexander Brace, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Zhen Xie, Diangen Lin, Maulik Shukla, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Prasanna Balaprakash, Gina Tourassi, John Gounley, Heidi Hanson, Thomas E Potok, Massimiliano Lupo Pasini, Kate Evans, Dan Lu, Dalton Lunga, Junqi Yin, Sajal Dash, Feiyi Wang, Mallikarjun Shankar, Isaac Lyngaas, Xiao Wang, Guojing Cong, Pei Zhang, Ming Fan, Siyan Liu, Adolfy Hoisie, Shinjae Yoo, Yihui Ren, William Tang, Kyle Felker, Alexey Svyatkovskiy, Hang Liu, Ashwin Aji, Angela Dalton, Michael Schulte, Karl Schulz, Yuntian Deng, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Anima Anandkumar, Rick Stevens

Figure 1 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Figure 2 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Figure 3 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Figure 4 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Viaarxiv icon

Towards a Modular Architecture for Science Factories

Add code
Bookmark button
Alert button
Aug 18, 2023
Rafael Vescovi, Tobias Ginsburg, Kyle Hippe, Doga Ozgulbas, Casey Stone, Abraham Stroka, Rory Butler, Ben Blaiszik, Tom Brettin, Kyle Chard, Mark Hereld, Arvind Ramanathan, Rick Stevens, Aikaterini Vriza, Jie Xu, Qingteng Zhang, Ian Foster

Figure 1 for Towards a Modular Architecture for Science Factories
Figure 2 for Towards a Modular Architecture for Science Factories
Figure 3 for Towards a Modular Architecture for Science Factories
Figure 4 for Towards a Modular Architecture for Science Factories
Viaarxiv icon

Learning from learning machines: a new generation of AI technology to meet the needs of science

Add code
Bookmark button
Alert button
Nov 27, 2021
Luca Pion-Tonachini, Kristofer Bouchard, Hector Garcia Martin, Sean Peisert, W. Bradley Holtz, Anil Aswani, Dipankar Dwivedi, Haruko Wainwright, Ghanshyam Pilania, Benjamin Nachman, Babetta L. Marrone, Nicola Falco, Prabhat, Daniel Arnold, Alejandro Wolf-Yadlin, Sarah Powers, Sharlee Climer, Quinn Jackson, Ty Carlson, Michael Sohn, Petrus Zwart, Neeraj Kumar, Amy Justice, Claire Tomlin, Daniel Jacobson, Gos Micklem, Georgios V. Gkoutos, Peter J. Bickel, Jean-Baptiste Cazier, Juliane Müller, Bobbie-Jo Webb-Robertson, Rick Stevens, Mark Anderson, Ken Kreutz-Delgado, Michael W. Mahoney, James B. Brown

Figure 1 for Learning from learning machines: a new generation of AI technology to meet the needs of science
Figure 2 for Learning from learning machines: a new generation of AI technology to meet the needs of science
Figure 3 for Learning from learning machines: a new generation of AI technology to meet the needs of science
Figure 4 for Learning from learning machines: a new generation of AI technology to meet the needs of science
Viaarxiv icon

Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening

Add code
Bookmark button
Alert button
Jun 30, 2021
Austin Clyde, Thomas Brettin, Alexander Partin, Hyunseung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli, Shantenu Jha, Arvind Ramanathan, Rick Stevens

Figure 1 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 2 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 3 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 4 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Viaarxiv icon

Neko: a Library for Exploring Neuromorphic Learning Rules

Add code
Bookmark button
Alert button
May 01, 2021
Zixuan Zhao, Nathan Wycoff, Neil Getty, Rick Stevens, Fangfang Xia

Figure 1 for Neko: a Library for Exploring Neuromorphic Learning Rules
Figure 2 for Neko: a Library for Exploring Neuromorphic Learning Rules
Figure 3 for Neko: a Library for Exploring Neuromorphic Learning Rules
Figure 4 for Neko: a Library for Exploring Neuromorphic Learning Rules
Viaarxiv icon

Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds

Add code
Bookmark button
Alert button
Mar 11, 2021
Austin Clyde, Arvind Ramanathan, Rick Stevens

Figure 1 for Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds
Figure 2 for Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds
Figure 3 for Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds
Figure 4 for Scaffold Embeddings: Learning the Structure Spanned by Chemical Fragments, Scaffolds and Compounds
Viaarxiv icon

Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers

Add code
Bookmark button
Alert button
Mar 04, 2021
Agastya P. Bhati, Shunzhou Wan, Dario Alfè, Austin R. Clyde, Mathis Bode, Li Tan, Mikhail Titov, Andre Merzky, Matteo Turilli, Shantenu Jha, Roger R. Highfield, Walter Rocchia, Nicola Scafuri, Sauro Succi, Dieter Kranzlmüller, Gerald Mathias, David Wifling, Yann Donon, Alberto Di Meglio, Sofia Vallecorsa, Heng Ma, Anda Trifan, Arvind Ramanathan, Tom Brettin, Alexander Partin, Fangfang Xia, Xiaotan Duan, Rick Stevens, Peter V. Coveney

Figure 1 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Figure 2 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Figure 3 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Figure 4 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Viaarxiv icon