Alert button
Picture for Richard M. Leahy

Richard M. Leahy

Alert button

Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results

Add code
Bookmark button
Alert button
Feb 08, 2024
Kelly Payette, Céline Steger, Roxane Licandro, Priscille de Dumast, Hongwei Bran Li, Matthew Barkovich, Liu Li, Maik Dannecker, Chen Chen, Cheng Ouyang, Niccolò McConnell, Alina Miron, Yongmin Li, Alena Uus, Irina Grigorescu, Paula Ramirez Gilliland, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Haoyu Wang, Ziyan Huang, Jin Ye, Mireia Alenyà, Valentin Comte, Oscar Camara, Jean-Baptiste Masson, Astrid Nilsson, Charlotte Godard, Moona Mazher, Abdul Qayyum, Yibo Gao, Hangqi Zhou, Shangqi Gao, Jia Fu, Guiming Dong, Guotai Wang, ZunHyan Rieu, HyeonSik Yang, Minwoo Lee, Szymon Płotka, Michal K. Grzeszczyk, Arkadiusz Sitek, Luisa Vargas Daza, Santiago Usma, Pablo Arbelaez, Wenying Lu, Wenhao Zhang, Jing Liang, Romain Valabregue, Anand A. Joshi, Krishna N. Nayak, Richard M. Leahy, Luca Wilhelmi, Aline Dändliker, Hui Ji, Antonio G. Gennari, Anton Jakovčić, Melita Klaić, Ana Adžić, Pavel Marković, Gracia Grabarić, Gregor Kasprian, Gregor Dovjak, Milan Rados, Lana Vasung, Meritxell Bach Cuadra, Andras Jakab

Viaarxiv icon

Meta Transfer of Self-Supervised Knowledge: Foundation Model in Action for Post-Traumatic Epilepsy Prediction

Add code
Bookmark button
Alert button
Dec 21, 2023
Wenhui Cui, Haleh Akrami, Ganning Zhao, Anand A. Joshi, Richard M. Leahy

Viaarxiv icon

Neuro-GPT: Developing A Foundation Model for EEG

Add code
Bookmark button
Alert button
Nov 11, 2023
Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A. Joshi, Richard M. Leahy

Viaarxiv icon

Toward Improved Generalization: Meta Transfer of Self-supervised Knowledge on Graphs

Add code
Bookmark button
Alert button
Dec 16, 2022
Wenhui Cui, Haleh Akrami, Anand A. Joshi, Richard M. Leahy

Figure 1 for Toward Improved Generalization: Meta Transfer of Self-supervised Knowledge on Graphs
Figure 2 for Toward Improved Generalization: Meta Transfer of Self-supervised Knowledge on Graphs
Figure 3 for Toward Improved Generalization: Meta Transfer of Self-supervised Knowledge on Graphs
Figure 4 for Toward Improved Generalization: Meta Transfer of Self-supervised Knowledge on Graphs
Viaarxiv icon

Learning from imperfect training data using a robust loss function: application to brain image segmentation

Add code
Bookmark button
Alert button
Aug 08, 2022
Haleh Akrami, Wenhui Cui, Anand A Joshi, Richard M. Leahy

Figure 1 for Learning from imperfect training data using a robust loss function: application to brain image segmentation
Figure 2 for Learning from imperfect training data using a robust loss function: application to brain image segmentation
Viaarxiv icon

Semi-supervised Learning using Robust Loss

Add code
Bookmark button
Alert button
Mar 03, 2022
Wenhui Cui, Haleh Akrami, Anand A. Joshi, Richard M. Leahy

Figure 1 for Semi-supervised Learning using Robust Loss
Figure 2 for Semi-supervised Learning using Robust Loss
Figure 3 for Semi-supervised Learning using Robust Loss
Figure 4 for Semi-supervised Learning using Robust Loss
Viaarxiv icon

fMRI-Kernel Regression: A Kernel-based Method for Pointwise Statistical Analysis of rs-fMRI for Population Studies

Add code
Bookmark button
Alert button
Dec 13, 2020
Anand A. Joshi, Soyoung Choi, Haleh Akrami, Richard M. Leahy

Figure 1 for fMRI-Kernel Regression: A Kernel-based Method for Pointwise Statistical Analysis of rs-fMRI for Population Studies
Figure 2 for fMRI-Kernel Regression: A Kernel-based Method for Pointwise Statistical Analysis of rs-fMRI for Population Studies
Figure 3 for fMRI-Kernel Regression: A Kernel-based Method for Pointwise Statistical Analysis of rs-fMRI for Population Studies
Figure 4 for fMRI-Kernel Regression: A Kernel-based Method for Pointwise Statistical Analysis of rs-fMRI for Population Studies
Viaarxiv icon

Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression

Add code
Bookmark button
Alert button
Oct 18, 2020
Haleh Akrami, Anand A. Joshi, Sergul Aydore, Richard M. Leahy

Figure 1 for Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression
Figure 2 for Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression
Figure 3 for Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression
Figure 4 for Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression
Viaarxiv icon