Abstract:Biologically-informed neural networks typically leverage pathway annotations to enhance performance in biomedical applications. We hypothesized that the benefits of pathway integration does not arise from its biological relevance, but rather from the sparsity it introduces. We conducted a comprehensive analysis of all relevant pathway-based neural network models for predictive tasks, critically evaluating each study's contributions. From this review, we curated a subset of methods for which the source code was publicly available. The comparison of the biologically informed state-of-the-art deep learning models and their randomized counterparts showed that models based on randomized information performed equally well as biologically informed ones across different metrics and datasets. Notably, in 3 out of the 15 analyzed models, the randomized versions even outperformed their biologically informed counterparts. Moreover, pathway-informed models did not show any clear advantage in interpretability, as randomized models were still able to identify relevant disease biomarkers despite lacking explicit pathway information. Our findings suggest that pathway annotations may be too noisy or inadequately explored by current methods. Therefore, we propose a methodology that can be applied to different domains and can serve as a robust benchmark for systematically comparing novel pathway-informed models against their randomized counterparts. This approach enables researchers to rigorously determine whether observed performance improvements can be attributed to biological insights.
Abstract:Understanding how residue variations affect protein stability is crucial for designing functional proteins and deciphering the molecular mechanisms underlying disease-related mutations. Recent advances in protein language models (PLMs) have revolutionized computational protein analysis, enabling, among other things, more accurate predictions of mutational effects. In this work, we introduce JanusDDG, a deep learning framework that leverages PLM-derived embeddings and a bidirectional cross-attention transformer architecture to predict $\Delta \Delta G$ of single and multiple-residue mutations while simultaneously being constrained to respect fundamental thermodynamic properties, such as antisymmetry and transitivity. Unlike conventional self-attention, JanusDDG computes queries (Q) and values (V) as the difference between wild-type and mutant embeddings, while keys (K) alternate between the two. This cross-interleaved attention mechanism enables the model to capture mutation-induced perturbations while preserving essential contextual information. Experimental results show that JanusDDG achieves state-of-the-art performance in predicting $\Delta \Delta G$ from sequence alone, matching or exceeding the accuracy of structure-based methods for both single and multiple mutations.