Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Penghang Yin

Recurrence of Optimum for Training Weight and Activation Quantized Networks


Dec 10, 2020
Ziang Long, Penghang Yin, Jack Xin


  Access Paper or Ask Questions

Learning Quantized Neural Nets by Coarse Gradient Method for Non-linear Classification


Nov 23, 2020
Ziang Long, Penghang Yin, Jack Xin


  Access Paper or Ask Questions

Global Convergence and Geometric Characterization of Slow to Fast Weight Evolution in Neural Network Training for Classifying Linearly Non-Separable Data


Mar 05, 2020
Ziang Long, Penghang Yin, Jack Xin


  Access Paper or Ask Questions

Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets


Mar 13, 2019
Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, Jack Xin


  Access Paper or Ask Questions

Non-ergodic Convergence Analysis of Heavy-Ball Algorithms


Nov 09, 2018
Tao Sun, Penghang Yin, Dongsheng Li, Chun Huang, Lei Guan, Hao Jiang


  Access Paper or Ask Questions

Laplacian Smoothing Gradient Descent


Oct 17, 2018
Stanley Osher, Bao Wang, Penghang Yin, Xiyang Luo, Minh Pham, Alex Lin

* 17 pages, 10 figures 

  Access Paper or Ask Questions

Adversarial Defense via Data Dependent Activation Function and Total Variation Minimization


Sep 23, 2018
Bao Wang, Alex T. Lin, Zuoqiang Shi, Wei Zhu, Penghang Yin, Andrea L. Bertozzi, Stanley J. Osher

* 11 pages, 5 figures 

  Access Paper or Ask Questions

BinaryRelax: A Relaxation Approach For Training Deep Neural Networks With Quantized Weights


Sep 05, 2018
Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, Jack Xin


  Access Paper or Ask Questions

Blended Coarse Gradient Descent for Full Quantization of Deep Neural Networks


Aug 29, 2018
Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, Jack Xin


  Access Paper or Ask Questions

Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for $k$-means Clustering


May 21, 2018
Penghang Yin, Minh Pham, Adam Oberman, Stanley Osher


  Access Paper or Ask Questions

On the complexity of convex inertial proximal algorithms


Jan 24, 2018
Tao Sun, Penghang Yin


  Access Paper or Ask Questions

Deep Learning for Real-Time Crime Forecasting and its Ternarization


Nov 23, 2017
Bao Wang, Penghang Yin, Andrea L. Bertozzi, P. Jeffrey Brantingham, Stanley J. Osher, Jack Xin

* 14 pages, 7 figures 

  Access Paper or Ask Questions

Quantization and Training of Low Bit-Width Convolutional Neural Networks for Object Detection


Aug 17, 2017
Penghang Yin, Shuai Zhang, Yingyong Qi, Jack Xin


  Access Paper or Ask Questions