Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

BoxGraph: Semantic Place Recognition and Pose Estimation from 3D LiDAR


Jun 30, 2022
Georgi Pramatarov, Daniele De Martini, Matthew Gadd, Paul Newman

* Accepted for publication at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

What Goes Around: Leveraging a Constant-curvature Motion Constraint in Radar Odometry


Jun 21, 2022
Roberto Aldera, Matthew Gadd, Daniele De Martini, Paul Newman

* Accepted for RA-L 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Depth-SIMS: Semi-Parametric Image and Depth Synthesis


Mar 07, 2022
Valentina Musat, Daniele De Martini, Matthew Gadd, Paul Newman


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fast-MbyM: Leveraging Translational Invariance of the Fourier Transform for Efficient and Accurate Radar Odometry


Mar 01, 2022
Robert Weston, Matthew Gadd, Daniele De Martini, Paul Newman, Ingmar Posner

* 7 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Contrastive Learning for Unsupervised Radar Place Recognition


Oct 06, 2021
Matthew Gadd, Daniele De Martini, Paul Newman

* accepted for publication at the IEEE International Conference on Advanced Robotics (ICAR) 2021. arXiv admin note: substantial text overlap with arXiv:2106.06703 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The Oxford Road Boundaries Dataset


Jun 16, 2021
Tarlan Suleymanov, Matthew Gadd, Daniele De Martini, Paul Newman

* Accepted for publication at the workshop "3D-DLAD: 3D-Deep Learning for Autonomous Driving" (WS15), Intelligent Vehicles Symposium (IV 2021) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unsupervised Place Recognition with Deep Embedding Learning over Radar Videos


Jun 12, 2021
Matthew Gadd, Daniele De Martini, Paul Newman

* to be presented at the Workshop on Radar Perception for All-Weather Autonomy at the IEEE International Conference on Robotics and Automation (ICRA) 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fool Me Once: Robust Selective Segmentation via Out-of-Distribution Detection with Contrastive Learning


Mar 01, 2021
David Williams, Matthew Gadd, Daniele De Martini, Paul Newman

* Accepted for publication at the 2021 IEEE International Conference on Robotics and Automation (ICRA) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Self-Supervised Localisation between Range Sensors and Overhead Imagery


Jun 03, 2020
Tim Y. Tang, Daniele De Martini, Shangzhe Wu, Paul Newman

* Accepted to Robotics: Science and Systems (RSS) 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Keep off the Grass: Permissible Driving Routes from Radar with Weak Audio Supervision


May 11, 2020
David Williams, Daniele De Martini, Matthew Gadd, Letizia Marchegiani, Paul Newman

* submitted to the IEEE Intelligent Transportation Systems Conference (ITSC) 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
4
5
>>