Abstract:Despite high semantic alignment, modern text-to-image (T2I) generative models still struggle to synthesize diverse images from a given prompt. This lack of diversity not only restricts user choice, but also risks amplifying societal biases. In this work, we enhance the T2I diversity through a geometric lens. Unlike most existing methods that rely primarily on entropy-based guidance to increase sample dissimilarity, we introduce Geometry-Aware Spherical Sampling (GASS) to enhance diversity by explicitly controlling both prompt-dependent and prompt-independent sources of variation. Specifically, we decompose the diversity measure in CLIP embeddings using two orthogonal directions: the text embedding, which captures semantic variation related to the prompt, and an identified orthogonal direction that captures prompt-independent variation (e.g., backgrounds). Based on this decomposition, GASS increases the geometric projection spread of generated image embeddings along both axes and guides the T2I sampling process via expanded predictions along the generation trajectory. Our experiments on different frozen T2I backbones (U-Net and DiT, diffusion and flow) and benchmarks demonstrate the effectiveness of disentangled diversity enhancement with minimal impact on image fidelity and semantic alignment.
Abstract:Fast weight architectures offer a promising alternative to attention-based transformers for long-context modeling by maintaining constant memory overhead regardless of context length. However, their potential is limited by the next-token prediction (NTP) training paradigm. NTP optimizes single-token predictions and ignores semantic coherence across multiple tokens following a prefix. Consequently, fast weight models, which dynamically update their parameters to store contextual information, learn suboptimal representations that fail to capture long-range dependencies. We introduce REFINE (Reinforced Fast weIghts with Next sEquence prediction), a reinforcement learning framework that trains fast weight models under the next-sequence prediction (NSP) objective. REFINE selects informative token positions based on prediction entropy, generates multi-token rollouts, assigns self-supervised sequence-level rewards, and optimizes the model with group relative policy optimization (GRPO). REFINE is applicable throughout the training lifecycle of pre-trained language models: mid-training, post-training, and test-time training. Our experiments on LaCT-760M and DeltaNet-1.3B demonstrate that REFINE consistently outperforms supervised fine-tuning with NTP across needle-in-a-haystack retrieval, long-context question answering, and diverse tasks in LongBench. REFINE provides an effective and versatile framework for improving long-context modeling in fast weight architectures.
Abstract:Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.




Abstract:Human action recognition models often rely on background cues rather than human movement and pose to make predictions, a behavior known as background bias. We present a systematic analysis of background bias across classification models, contrastive text-image pretrained models, and Video Large Language Models (VLLM) and find that all exhibit a strong tendency to default to background reasoning. Next, we propose mitigation strategies for classification models and show that incorporating segmented human input effectively decreases background bias by 3.78%. Finally, we explore manual and automated prompt tuning for VLLMs, demonstrating that prompt design can steer predictions towards human-focused reasoning by 9.85%.




Abstract:Text-to-image (T2I) diffusion models have achieved strong performance in semantic alignment, yet they still struggle with generating the correct number of objects specified in prompts. Existing approaches typically incorporate auxiliary counting networks as external critics to enhance numeracy. However, since these critics must provide gradient guidance during generation, they are restricted to regression-based models that are inherently differentiable, thus excluding detector-based models with superior counting ability, whose count-via-enumeration nature is non-differentiable. To overcome this limitation, we propose Detector-to-Differentiable (D2D), a novel framework that transforms non-differentiable detection models into differentiable critics, thereby leveraging their superior counting ability to guide numeracy generation. Specifically, we design custom activation functions to convert detector logits into soft binary indicators, which are then used to optimize the noise prior at inference time with pre-trained T2I models. Our extensive experiments on SDXL-Turbo, SD-Turbo, and Pixart-DMD across four benchmarks of varying complexity (low-density, high-density, and multi-object scenarios) demonstrate consistent and substantial improvements in object counting accuracy (e.g., boosting up to 13.7% on D2D-Small, a 400-prompt, low-density benchmark), with minimal degradation in overall image quality and computational overhead.




Abstract:Fine-tuning vision-language models (VLMs) on robot teleoperation data to create vision-language-action (VLA) models is a promising paradigm for training generalist policies, but it suffers from a fundamental tradeoff: learning to produce actions often diminishes the VLM's foundational reasoning and multimodal understanding, hindering generalization to novel scenarios, instruction following, and semantic understanding. We argue that this catastrophic forgetting is due to a distribution mismatch between the VLM's internet-scale pretraining corpus and the robotics fine-tuning data. Inspired by this observation, we introduce VLM2VLA: a VLA training paradigm that first resolves this mismatch at the data level by representing low-level actions with natural language. This alignment makes it possible to train VLAs solely with Low-Rank Adaptation (LoRA), thereby minimally modifying the VLM backbone and averting catastrophic forgetting. As a result, the VLM can be fine-tuned on robot teleoperation data without fundamentally altering the underlying architecture and without expensive co-training on internet-scale VLM datasets. Through extensive Visual Question Answering (VQA) studies and over 800 real-world robotics experiments, we demonstrate that VLM2VLA preserves the VLM's core capabilities, enabling zero-shot generalization to novel tasks that require open-world semantic reasoning and multilingual instruction following.




Abstract:Coreset selection methods have shown promise in reducing the training data size while maintaining model performance for data-efficient machine learning. However, as many datasets suffer from biases that cause models to learn spurious correlations instead of causal features, it is important to understand whether and how dataset reduction methods may perpetuate, amplify, or mitigate these biases. In this work, we conduct the first comprehensive analysis of the implications of data selection on the spurious bias levels of the selected coresets and the robustness of downstream models trained on them. We use an extensive experimental setting spanning ten different spurious correlations benchmarks, five score metrics to characterize sample importance/ difficulty, and five data selection policies across a broad range of coreset sizes. Thereby, we unravel a series of nontrivial nuances in interactions between sample difficulty and bias alignment, as well as dataset bias and resultant model robustness. For example, we find that selecting coresets using embedding-based sample characterization scores runs a comparatively lower risk of inadvertently exacerbating bias than selecting using characterizations based on learning dynamics. Most importantly, our analysis reveals that although some coreset selection methods could achieve lower bias levels by prioritizing difficult samples, they do not reliably guarantee downstream robustness.
Abstract:We study Diffusion Schr\"odinger Bridge (DSB) models in the context of dynamical astrophysical systems, specifically tackling observational inverse prediction tasks within Giant Molecular Clouds (GMCs) for star formation. We introduce the Astro-DSB model, a variant of DSB with the pairwise domain assumption tailored for astrophysical dynamics. By investigating its learning process and prediction performance in both physically simulated data and in real observations (the Taurus B213 data), we present two main takeaways. First, from the astrophysical perspective, our proposed paired DSB method improves interpretability, learning efficiency, and prediction performance over conventional astrostatistical and other machine learning methods. Second, from the generative modeling perspective, probabilistic generative modeling reveals improvements over discriminative pixel-to-pixel modeling in Out-Of-Distribution (OOD) testing cases of physical simulations with unseen initial conditions and different dominant physical processes. Our study expands research into diffusion models beyond the traditional visual synthesis application and provides evidence of the models' learning abilities beyond pure data statistics, paving a path for future physics-aware generative models which can align dynamics between machine learning and real (astro)physical systems.
Abstract:Multimodal Large Language Models (MLLMs) excel at simple vision-language tasks but struggle when faced with complex tasks that require multiple capabilities, such as simultaneously recognizing objects, counting them, and understanding their spatial relationships. This might be partially the result of the fact that Visual Instruction Tuning (VIT), a critical training step for MLLMs, has traditionally focused on scaling data volume, but not the compositional complexity of training examples. We propose COMPACT (COMPositional Atomic-to-complex visual Capability Tuning), which generates a training dataset explicitly controlling for the compositional complexity of the training examples. The data from COMPACT allows MLLMs to train on combinations of atomic capabilities to learn complex capabilities more efficiently. Across all benchmarks, COMPACT achieves comparable performance to the LLaVA-665k VIT while using less than 10% of its data budget, and even outperforms it on several, especially those involving complex multi-capability tasks. For example, COMPACT achieves substantial 83.3% improvement on MMStar and 94.0% improvement on MM-Vet compared to the full-scale VIT on particularly complex questions that require four or more atomic capabilities. COMPACT offers a scalable, data-efficient, visual compositional tuning recipe to improve on complex visual-language tasks.
Abstract:Explanations for computer vision models are important tools for interpreting how the underlying models work. However, they are often presented in static formats, which pose challenges for users, including information overload, a gap between semantic and pixel-level information, and limited opportunities for exploration. We investigate interactivity as a mechanism for tackling these issues in three common explanation types: heatmap-based, concept-based, and prototype-based explanations. We conducted a study (N=24), using a bird identification task, involving participants with diverse technical and domain expertise. We found that while interactivity enhances user control, facilitates rapid convergence to relevant information, and allows users to expand their understanding of the model and explanation, it also introduces new challenges. To address these, we provide design recommendations for interactive computer vision explanations, including carefully selected default views, independent input controls, and constrained output spaces.