Abstract:Reconstructing high-fidelity underwater scenes remains a challenging task due to light absorption, scattering, and limited visibility inherent in aquatic environments. This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and geometric accuracy of deep underwater rendering. We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration. To address sparse-view limitations and improve view consistency, we introduce a frame interpolation strategy with a novel adaptive weighting scheme. Additionally, we introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content. We also release a newly collected dataset, Submerged3D, captured specifically in deep-sea environments. Experimental results demonstrate that our framework consistently outperforms state-of-the-art methods with PSNR gains up to 1.90dB, delivering superior perceptual quality and robustness, and offering promising directions for marine robotics and underwater visual analytics.
Abstract:Underwater visual enhancement (UVE) and underwater 3D reconstruction pose significant challenges in computer vision and AI-based tasks due to complex imaging conditions in aquatic environments. Despite the development of numerous enhancement algorithms, a comprehensive and systematic review covering both UVE and underwater 3D reconstruction remains absent. To advance research in these areas, we present an in-depth review from multiple perspectives. First, we introduce the fundamental physical models, highlighting the peculiarities that challenge conventional techniques. We survey advanced methods for visual enhancement and 3D reconstruction specifically designed for underwater scenarios. The paper assesses various approaches from non-learning methods to advanced data-driven techniques, including Neural Radiance Fields and 3D Gaussian Splatting, discussing their effectiveness in handling underwater distortions. Finally, we conduct both quantitative and qualitative evaluations of state-of-the-art UVE and underwater 3D reconstruction algorithms across multiple benchmark datasets. Finally, we highlight key research directions for future advancements in underwater vision.
Abstract:Underwater videos often suffer from degraded quality due to light absorption, scattering, and various noise sources. Among these, marine snow, which is suspended organic particles appearing as bright spots or noise, significantly impacts machine vision tasks, particularly those involving feature matching. Existing methods for removing marine snow are ineffective due to the lack of paired training data. To address this challenge, this paper proposes a novel enhancement framework that introduces a new approach for generating paired datasets from raw underwater videos. The resulting dataset consists of paired images of generated snowy and snow, free underwater videos, enabling supervised training for video enhancement. We describe the dataset creation process, highlight its key characteristics, and demonstrate its effectiveness in enhancing underwater image restoration in the absence of ground truth.
Abstract:Low-light conditions pose significant challenges for both human and machine annotation. This in turn has led to a lack of research into machine understanding for low-light images and (in particular) videos. A common approach is to apply annotations obtained from high quality datasets to synthetically created low light versions. In addition, these approaches are often limited through the use of unrealistic noise models. In this paper, we propose a new Degradation Estimation Network (DEN), which synthetically generates realistic standard RGB (sRGB) noise without the requirement for camera metadata. This is achieved by estimating the parameters of physics-informed noise distributions, trained in a self-supervised manner. This zero-shot approach allows our method to generate synthetic noisy content with a diverse range of realistic noise characteristics, unlike other methods which focus on recreating the noise characteristics of the training data. We evaluate our proposed synthetic pipeline using various methods trained on its synthetic data for typical low-light tasks including synthetic noise replication, video enhancement, and object detection, showing improvements of up to 24\% KLD, 21\% LPIPS, and 62\% AP$_{50-95}$, respectively.
Abstract:White blood cell (WBC) classification assists in assessing immune health and diagnosing various diseases, yet manual classification is labor-intensive and prone to inconsistencies. Recent advancements in deep learning have shown promise over traditional methods; however, challenges such as data imbalance and the computational demands of modern technologies, such as Transformer-based models which do not scale well with input size, limit their practical application. This paper introduces a novel framework that leverages Mamba models integrated with ensemble learning to improve WBC classification. Mamba models, known for their linear complexity, provide a scalable alternative to Transformer-based approaches, making them suitable for deployment in resource-constrained environments. Additionally, we introduce a new WBC dataset, Chula-WBC-8, for benchmarking. Our approach not only validates the effectiveness of Mamba models in this domain but also demonstrates their potential to significantly enhance classification efficiency without compromising accuracy. The source code can be found at https://github.com/LewisClifton/Mamba-WBC-Classification.
Abstract:Low-light and underwater videos suffer from poor visibility, low contrast, and high noise, necessitating enhancements in visual quality. However, existing approaches typically rely on paired ground truth, which limits their practicality and often fails to maintain temporal consistency. To overcome these obstacles, this paper introduces a novel zero-shot learning approach named Zero-TIG, leveraging the Retinex theory and optical flow techniques. The proposed network consists of an enhancement module and a temporal feedback module. The enhancement module comprises three subnetworks: low-light image denoising, illumination estimation, and reflection denoising. The temporal enhancement module ensures temporal consistency by incorporating histogram equalization, optical flow computation, and image warping to align the enhanced previous frame with the current frame, thereby maintaining continuity. Additionally, we address color distortion in underwater data by adaptively balancing RGB channels. The experimental results demonstrate that our method achieves low-light video enhancement without the need for paired training data, making it a promising and applicable method for real-world scenario enhancement.
Abstract:Neural radiance field (NeRF) research has made significant progress in modeling static video content captured in the wild. However, current models and rendering processes rarely consider scenes captured underwater, which are useful for studying and filming ocean life. They fail to address visual artifacts unique to underwater scenes, such as moving fish and suspended particles. This paper introduces a novel NeRF renderer and optimization scheme for an implicit MLP-based NeRF model. Our renderer reduces the influence of floaters and moving objects that interfere with static objects of interest by estimating a single surface per ray. We use a Gaussian weight function with a small offset to ensure that the transmittance of the surrounding media remains constant. Additionally, we enhance our model with a depth-based scaling function to upscale gradients for near-camera volumes. Overall, our method outperforms the baseline Nerfacto by approximately 7.5\% and SeaThru-NeRF by 6.2% in terms of PSNR. Subjective evaluation also shows a significant reduction of artifacts while preserving details of static targets and background compared to the state of the arts.
Abstract:In image enhancement tasks, such as low-light and underwater image enhancement, a degraded image can correspond to multiple plausible target images due to dynamic photography conditions, such as variations in illumination. This naturally results in a one-to-many mapping challenge. To address this, we propose a Bayesian Enhancement Model (BEM) that incorporates Bayesian Neural Networks (BNNs) to capture data uncertainty and produce diverse outputs. To achieve real-time inference, we introduce a two-stage approach: Stage I employs a BNN to model the one-to-many mappings in the low-dimensional space, while Stage II refines fine-grained image details using a Deterministic Neural Network (DNN). To accelerate BNN training and convergence, we introduce a dynamic \emph{Momentum Prior}. Extensive experiments on multiple low-light and underwater image enhancement benchmarks demonstrate the superiority of our method over deterministic models.
Abstract:The rapid advancements in artificial intelligence (AI), particularly in generative AI and large language models (LLMs), have profoundly impacted the creative industries by enabling innovative content creation, enhancing workflows, and democratizing access to creative tools. This paper explores the significant technological shifts since our previous review in 2022, highlighting how these developments have expanded creative opportunities and efficiency. These technological advancements have enhanced the capabilities of text-to-image, text-to-video, and multimodal generation technologies. In particular, key breakthroughs in LLMs have established new benchmarks in conversational AI, while advancements in image generators have revolutionized content creation. We also discuss AI integration into post-production workflows, which has significantly accelerated and refined traditional processes. Despite these innovations, challenges remain, particularly for the media industry, due to the demands on communication traffic from creative content. We therefore include data compression and quality assessment in this paper. Furthermore, we highlight the trend toward unified AI frameworks capable of addressing multiple creative tasks and underscore the importance of human oversight to mitigate AI-generated inaccuracies. Finally, we explore AI's future potential in the creative sector, stressing the need to navigate emerging challenges to maximize its benefits while addressing associated risks.
Abstract:Novel view synthesis (NVS) has shown significant promise for applications in cinematographic production, particularly through the exploitation of Neural Radiance Fields (NeRF) and Gaussian Splatting (GS). These methods model real 3D scenes, enabling the creation of new shots that are challenging to capture in the real world due to set topology or expensive equipment requirement. This innovation also offers cinematographic advantages such as smooth camera movements, virtual re-shoots, slow-motion effects, etc. This paper explores dynamic NVS with the aim of facilitating the model selection process. We showcase its potential through a short montage filmed using various NVS models.