Abstract:There is an emerging effort to develop NLP for Indonesias 700+ local languages, but progress remains costly due to the need for direct engagement with native speakers. However, it is unclear what these language communities truly need from language technology. To address this, we conduct a nationwide survey to assess the actual needs of native speakers in Indonesia. Our findings indicate that addressing language barriers, particularly through machine translation and information retrieval, is the most critical priority. Although there is strong enthusiasm for advancements in language technology, concerns around privacy, bias, and the use of public data for AI training highlight the need for greater transparency and clear communication to support broader AI adoption.
Abstract:Although vision-language and large language models (VLM and LLM) offer promising opportunities for AI-driven educational assessment, their effectiveness in real-world classroom settings, particularly in underrepresented educational contexts, remains underexplored. In this study, we evaluated the performance of a state-of-the-art VLM and several LLMs on 646 handwritten exam responses from grade 4 students in six Indonesian schools, covering two subjects: Mathematics and English. These sheets contain more than 14K student answers that span multiple choice, short answer, and essay questions. Assessment tasks include grading these responses and generating personalized feedback. Our findings show that the VLM often struggles to accurately recognize student handwriting, leading to error propagation in downstream LLM grading. Nevertheless, LLM-generated feedback retains some utility, even when derived from imperfect input, although limitations in personalization and contextual relevance persist.
Abstract:The performance of large language models (LLMs) continues to improve, as reflected in rising scores on standard benchmarks. However, the lack of transparency around training data raises concerns about potential overlap with evaluation sets and the fairness of reported results. Although prior work has proposed methods for detecting data leakage, these approaches primarily focus on identifying outliers and have not been evaluated under controlled simulated leakage conditions. In this work, we compare existing leakage detection techniques, namely permutation and n-gram-based methods, under a continual pretraining setup that simulates real-world leakage scenarios, and additionally explore a lightweight method we call semi-half question. Although semi-half offers a low-cost alternative, our analysis shows that the n-gram method consistently achieves the highest F1-score. We also refine these techniques to support instance-level detection and reduce computational overhead. Leveraging the best-performing method, we create cleaned versions of MMLU and HellaSwag, and re-evaluate several LLMs. Our findings present a practical path toward more reliable and transparent evaluations, and we recommend contamination checks as a standard step before releasing benchmark results.
Abstract:Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
Abstract:Task-oriented dialogue (ToD) systems have been mostly created for high-resource languages, such as English and Chinese. However, there is a need to develop ToD systems for other regional or local languages to broaden their ability to comprehend the dialogue contexts in various languages. This paper introduces IndoToD, an end-to-end multi domain ToD benchmark in Indonesian. We extend two English ToD datasets to Indonesian, comprising four different domains by delexicalization to efficiently reduce the size of annotations. To ensure a high-quality data collection, we hire native speakers to manually translate the dialogues. Along with the original English datasets, these new Indonesian datasets serve as an effective benchmark for evaluating Indonesian and English ToD systems as well as exploring the potential benefits of cross-lingual and bilingual transfer learning approaches.