Abstract:The rapid advancements in large language models (LLMs) have led to the emergence of routing techniques, which aim to efficiently select the optimal LLM from diverse candidates to tackle specific tasks, optimizing performance while reducing costs. Current LLM routing methods are limited in effectiveness due to insufficient exploration of the intrinsic connection between user queries and the characteristics of LLMs. To address this issue, in this paper, we present RadialRouter, a novel framework for LLM routing which employs a lightweight Transformer-based backbone with a radial structure named RadialFormer to articulate the query-LLMs relationship. The optimal LLM selection is performed based on the final states of RadialFormer. The pipeline is further refined by an objective function that combines Kullback-Leibler divergence with the query-query contrastive loss to enhance robustness. Experimental results on RouterBench show that RadialRouter significantly outperforms existing routing methods by 9.2\% and 5.8\% in the Balance and Cost First scenarios, respectively. Additionally, its adaptability toward different performance-cost trade-offs and the dynamic LLM pool demonstrates practical application potential.
Abstract:The deployment of Large language models (LLMs) in many fields is largely hindered by their high computational and memory costs. Recent studies suggest that LLMs exhibit sparsity, which can be used for pruning. Previous pruning methods typically follow a prune-then-finetune paradigm. Since the pruned parts still contain valuable information, statically removing them without updating the remaining parameters often results in irreversible performance degradation, requiring costly recovery fine-tuning (RFT) to maintain performance. To address this, we propose a novel paradigm: first apply regularization, then prune. Based on this paradigm, we propose ELDeR: Getting Efficient LLMs through Data-Driven Regularized Layer-wise Pruning. We multiply the output of each transformer layer by an initial weight, then we iteratively learn the weights of each transformer layer by using a small amount of data in a simple way. After that, we apply regularization to the difference between the output and input of the layers with smaller weights, forcing the information to be transferred to the remaining layers. Compared with direct pruning, ELDeR reduces the information loss caused by direct parameter removal, thus better preserving the model's language modeling ability. Experimental results show that ELDeR achieves superior performance compared with powerful layer-wise structured pruning methods, while greatly reducing RFT computational costs. Since ELDeR is a layer-wise pruning method, its end-to-end acceleration effect is obvious, making it a promising technique for efficient LLMs.
Abstract:Reinforcement learning (RL) has emerged as an effective method for training reasoning models. However, existing RL approaches typically bias the model's output distribution toward reward-maximizing paths without introducing external knowledge. This limits their exploration capacity and results in a narrower reasoning capability boundary compared to base models. To address this limitation, we propose TAPO (Thought-Augmented Policy Optimization), a novel framework that augments RL by incorporating external high-level guidance ("thought patterns"). By adaptively integrating structured thoughts during training, TAPO effectively balances model-internal exploration and external guidance exploitation. Extensive experiments show that our approach significantly outperforms GRPO by 99% on AIME, 41% on AMC, and 17% on Minerva Math. Notably, these high-level thought patterns, abstracted from only 500 prior samples, generalize effectively across various tasks and models. This highlights TAPO's potential for broader applications across multiple tasks and domains. Our further analysis reveals that introducing external guidance produces powerful reasoning models with superior explainability of inference behavior and enhanced output readability.
Abstract:Multimodal large language models (MLLMs) exhibit impressive capabilities but still face challenges in complex visual reasoning. While recent efforts attempt to enhance MLLMs' reasoning by incorporating OpenAI o1-like structured thinking through explicit search structures or teacher-guided distillation, they often struggle to balance performance and efficiency. A critical limitation is their heavy reliance on extensive data and search spaces, resulting in low-efficiency implicit insight extraction and data utilization. To address this, we propose AStar, an Automated Structured thinking paradigm for multimodal reasoning via Monte Carlo Tree Search (MCTS). AStar automatically derives high-level cognitive reasoning patterns from limited data using MCTS-powered hierarchical structures. Building on these explicit patterns, we design a unified reasoning framework that seamlessly integrates models' internal reasoning capabilities and external reasoning guidelines, enabling efficient inference with minimal tree iterations. This novel paradigm strikes a compelling balance between performance and efficiency. Extensive experiments demonstrate AStar's effectiveness, achieving superior accuracy (54.0$\%$) on the MathVerse benchmark with a 7B backbone, surpassing GPT-4o (50.2$\%$) while maintaining substantial data and computational efficiency.
Abstract:Large language models (LLMs) have achieved significant progress across various domains, but their increasing scale results in high computational and memory costs. Recent studies have revealed that LLMs exhibit sparsity, providing the potential to reduce model size through pruning techniques. However, existing pruning methods typically follow a prune-then-finetune paradigm. Since the pruned components still contain valuable information, their direct removal often leads to irreversible performance degradation, imposing a substantial computational burden to recover performance during finetuning. In this paper, we propose a novel paradigm that first applies regularization, then prunes, and finally finetunes. Based on this paradigm, we introduce DReSS, a simple and effective Data-driven Regularized Structured Streamlining method for LLMs. By leveraging a small amount of data to regularize the components to be pruned, DReSS explicitly transfers the important information to the remaining parts of the model in advance. Compared to direct pruning, this can reduce the information loss caused by parameter removal, thereby enhancing its language modeling capabilities. Experimental results demonstrate that DReSS significantly outperforms existing pruning methods even under extreme pruning ratios, significantly reducing latency and increasing throughput.
Abstract:In-context Learning (ICL) enables large language models (LLMs) to tackle downstream tasks through sophisticated prompting and high-quality demonstrations. However, this traditional ICL paradigm shows limitations when facing complex mathematical reasoning tasks, primarily due to its heavy dependence on example quality and the necessity for human intervention in challenging scenarios. To address these limitations, this paper presents HiAR-ICL, a \textbf{Hi}gh-level \textbf{A}utomated \textbf{R}easoning paradigm in \textbf{ICL} that shifts focus from specific examples to abstract thinking patterns, extending the conventional concept of context in ICL. HiAR-ICL introduces five atomic reasoning actions as fundamental components for constructing chain-structured patterns. Using Monte Carlo Tree Search, we explore reasoning paths and construct thought cards to guide subsequent inference. We then develop a cognitive complexity framework that dynamically matches problems with appropriate thought cards. Experimental results demonstrate HiAR-ICL's effectiveness, achieving state-of-the-art accuracy (79.6$\%$) on the MATH benchmark with Qwen2.5-7B-Instruct, surpassing GPT-4o (76.6$\%$) and Claude 3.5 (71.1$\%$).
Abstract:Federated learning (FL) has found numerous applications in healthcare, finance, and IoT scenarios. Many existing FL frameworks offer a range of benchmarks to evaluate the performance of FL under realistic conditions. However, the process of customizing simulations to accommodate application-specific settings, data heterogeneity, and system heterogeneity typically remains unnecessarily complicated. This creates significant hurdles for traditional ML researchers in exploring the usage of FL, while also compromising the shareability of codes across FL frameworks. To address this issue, we propose a novel lightweight FL platform called FLGo, to facilitate cross-application FL studies with a high degree of shareability. Our platform offers 40+ benchmarks, 20+ algorithms, and 2 system simulators as out-of-the-box plugins. We also provide user-friendly APIs for quickly customizing new plugins that can be readily shared and reused for improved reproducibility. Finally, we develop a range of experimental tools, including parallel acceleration, experiment tracker and analyzer, and parameters auto-tuning. FLGo is maintained at \url{flgo-xmu.github.io}.