Abstract:In recent years, Unsupervised Domain Adaptation (UDA) has gained significant attention in the field of Natural Language Processing (NLP) owing to its ability to enhance model generalization across diverse domains. However, its application for knowledge transfer between distinct legal domains remains largely unexplored. To address the challenges posed by lengthy and complex legal texts and the limited availability of large-scale annotated datasets, we propose JurisCTC, a novel model designed to improve the accuracy of Legal Judgment Prediction (LJP) tasks. Unlike existing approaches, JurisCTC facilitates effective knowledge transfer across various legal domains and employs contrastive learning to distinguish samples from different domains. Specifically, for the LJP task, we enable knowledge transfer between civil and criminal law domains. Compared to other models and specific large language models (LLMs), JurisCTC demonstrates notable advancements, achieving peak accuracies of 76.59% and 78.83%, respectively.
Abstract:Artificial intelligence researchers have made significant advances in legal intelligence in recent years. However, the existing studies have not focused on the important value embedded in judgments reversals, which limits the improvement of the efficiency of legal intelligence. In this paper, we propose a causal Framework for Accurately Inferring case Reversals (FAIR), which models the problem of judgments reversals based on real Chinese judgments. We mine the causes of judgments reversals by causal inference methods and inject the obtained causal relationships into the neural network as a priori knowledge. And then, our framework is validated on a challenging dataset as a legal judgment prediction task. The experimental results show that our framework can tap the most critical factors in judgments reversal, and the obtained causal relationships can effectively improve the neural network's performance. In addition, we discuss the generalization ability of large language models for legal intelligence tasks using ChatGPT as an example. Our experiment has found that the generalization ability of large language models still has defects, and mining causal relationships can effectively improve the accuracy and explain ability of model predictions.