Alert button
Picture for Michael Hecht

Michael Hecht

Alert button

PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates

Add code
Bookmark button
Alert button
Mar 12, 2024
Janina Schreiber, Pau Batlle, Damar Wicaksono, Michael Hecht

Figure 1 for PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates
Figure 2 for PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates
Figure 3 for PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates
Figure 4 for PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates
Viaarxiv icon

Ensuring Topological Data-Structure Preservation under Autoencoder Compression due to Latent Space Regularization in Gauss--Legendre nodes

Add code
Bookmark button
Alert button
Sep 21, 2023
Chethan Krishnamurthy Ramanaik, Juan-Esteban Suarez Cardona, Anna Willmann, Pia Hanfeld, Nico Hoffmann, Michael Hecht

Viaarxiv icon

Ensuring Toplogical Data-Structure Preservation under Autoencoder Compression due to Latent Space Regularization in Gauss--Legendre nodes

Add code
Bookmark button
Alert button
Sep 15, 2023
Chethan Krishnamurthy Ramanaik, Juan-Esteban Suarez Cardona, Anna Willmann, Pia Hanfeld, Nico Hoffmann, Michael Hecht

Viaarxiv icon

Polynomial-Model-Based Optimization for Blackbox Objectives

Add code
Bookmark button
Alert button
Sep 01, 2023
Janina Schreiber, Damar Wicaksono, Michael Hecht

Figure 1 for Polynomial-Model-Based Optimization for Blackbox Objectives
Figure 2 for Polynomial-Model-Based Optimization for Blackbox Objectives
Figure 3 for Polynomial-Model-Based Optimization for Blackbox Objectives
Viaarxiv icon

Roadmap on Deep Learning for Microscopy

Add code
Bookmark button
Alert button
Mar 07, 2023
Giovanni Volpe, Carolina Wählby, Lei Tian, Michael Hecht, Artur Yakimovich, Kristina Monakhova, Laura Waller, Ivo F. Sbalzarini, Christopher A. Metzler, Mingyang Xie, Kevin Zhang, Isaac C. D. Lenton, Halina Rubinsztein-Dunlop, Daniel Brunner, Bijie Bai, Aydogan Ozcan, Daniel Midtvedt, Hao Wang, Nataša Sladoje, Joakim Lindblad, Jason T. Smith, Marien Ochoa, Margarida Barroso, Xavier Intes, Tong Qiu, Li-Yu Yu, Sixian You, Yongtao Liu, Maxim A. Ziatdinov, Sergei V. Kalinin, Arlo Sheridan, Uri Manor, Elias Nehme, Ofri Goldenberg, Yoav Shechtman, Henrik K. Moberg, Christoph Langhammer, Barbora Špačková, Saga Helgadottir, Benjamin Midtvedt, Aykut Argun, Tobias Thalheim, Frank Cichos, Stefano Bo, Lars Hubatsch, Jesus Pineda, Carlo Manzo, Harshith Bachimanchi, Erik Selander, Antoni Homs-Corbera, Martin Fränzl, Kevin de Haan, Yair Rivenson, Zofia Korczak, Caroline Beck Adiels, Mite Mijalkov, Dániel Veréb, Yu-Wei Chang, Joana B. Pereira, Damian Matuszewski, Gustaf Kylberg, Ida-Maria Sintorn, Juan C. Caicedo, Beth A Cimini, Muyinatu A. Lediju Bell, Bruno M. Saraiva, Guillaume Jacquemet, Ricardo Henriques, Wei Ouyang, Trang Le, Estibaliz Gómez-de-Mariscal, Daniel Sage, Arrate Muñoz-Barrutia, Ebba Josefson Lindqvist, Johanna Bergman

Figure 1 for Roadmap on Deep Learning for Microscopy
Figure 2 for Roadmap on Deep Learning for Microscopy
Figure 3 for Roadmap on Deep Learning for Microscopy
Figure 4 for Roadmap on Deep Learning for Microscopy
Viaarxiv icon

Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces

Add code
Bookmark button
Alert button
Jan 12, 2023
Juan-Esteban Suarez Cardona, Phil-Alexander Hofmann, Michael Hecht

Figure 1 for Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Figure 2 for Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Figure 3 for Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Figure 4 for Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Viaarxiv icon

Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power

Add code
Bookmark button
Alert button
Nov 23, 2022
Juan Esteban Suarez Cardona, Michael Hecht

Figure 1 for Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Figure 2 for Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Figure 3 for Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Figure 4 for Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Viaarxiv icon

InFlow: Robust outlier detection utilizing Normalizing Flows

Add code
Bookmark button
Alert button
Jun 10, 2021
Nishant Kumar, Pia Hanfeld, Michael Hecht, Michael Bussmann, Stefan Gumhold, Nico Hoffmannn

Figure 1 for InFlow: Robust outlier detection utilizing Normalizing Flows
Figure 2 for InFlow: Robust outlier detection utilizing Normalizing Flows
Figure 3 for InFlow: Robust outlier detection utilizing Normalizing Flows
Figure 4 for InFlow: Robust outlier detection utilizing Normalizing Flows
Viaarxiv icon