Abstract:Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.




Abstract:Robotics learning highly relies on human expertise and efforts, such as demonstrations, design of reward functions in reinforcement learning, performance evaluation using human feedback, etc. However, reliance on human assistance can lead to expensive learning costs and make skill learning difficult to scale. In this work, we introduce the Large Language Model Supervised Robotics Text2Skill Autonomous Learning (ARO) framework, which aims to replace human participation in the robot skill learning process with large-scale language models that incorporate reward function design and performance evaluation. We provide evidence that our approach enables fully autonomous robot skill learning, capable of completing partial tasks without human intervention. Furthermore, we also analyze the limitations of this approach in task understanding and optimization stability.