Abstract:Recent advances in vision-language models (VLMs) have markedly improved image-text alignment, yet they still fall short of human-like visual reasoning. A key limitation is that many VLMs rely on surface correlations rather than building logically coherent structured representations, which often leads to missed higher-level semantic structure and non-causal relational understanding, hindering compositional and verifiable reasoning. To address these limitations by introducing human models into the reasoning process, we propose CoTZero, an annotation-free paradigm with two components: (i) a dual-stage data synthesis approach and (ii) a cognition-aligned training method. In the first component, we draw inspiration from neurocognitive accounts of compositional productivity and global-to-local analysis. In the bottom-up stage, CoTZero extracts atomic visual primitives and incrementally composes them into diverse, structured question-reasoning forms. In the top-down stage, it enforces hierarchical reasoning by using coarse global structure to guide the interpretation of local details and causal relations. In the cognition-aligned training component, built on the synthesized CoT data, we introduce Cognitively Coherent Verifiable Rewards (CCVR) in Reinforcement Fine-Tuning (RFT) to further strengthen VLMs' hierarchical reasoning and generalization, providing stepwise feedback on reasoning coherence and factual correctness. Experiments show that CoTZero achieves an F1 score of 83.33 percent on our multi-level semantic inconsistency benchmark with lexical-perturbation negatives, across both in-domain and out-of-domain settings. Ablations confirm that each component contributes to more interpretable and human-aligned visual reasoning.
Abstract:When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
Abstract:Numerous medical systems powered by Large Language Models (LLMs) have achieved remarkable progress in diverse healthcare tasks. However, research on their medication safety remains limited due to the lack of real world datasets, constrained by privacy and accessibility issues. Moreover, evaluation of LLMs in realistic clinical consultation settings, particularly regarding medication safety, is still underexplored. To address these gaps, we propose a framework that simulates and evaluates clinical consultations to systematically assess the medication safety capabilities of LLMs. Within this framework, we generate inquiry diagnosis dialogues with embedded medication risks and construct a dedicated medication safety database, RxRisk DB, containing 6,725 contraindications, 28,781 drug interactions, and 14,906 indication-drug pairs. A two-stage filtering strategy ensures clinical realism and professional quality, resulting in the benchmark RxSafeBench with 2,443 high-quality consultation scenarios. We evaluate leading open-source and proprietary LLMs using structured multiple choice questions that test their ability to recommend safe medications under simulated patient contexts. Results show that current LLMs struggle to integrate contraindication and interaction knowledge, especially when risks are implied rather than explicit. Our findings highlight key challenges in ensuring medication safety in LLM-based systems and provide insights into improving reliability through better prompting and task-specific tuning. RxSafeBench offers the first comprehensive benchmark for evaluating medication safety in LLMs, advancing safer and more trustworthy AI-driven clinical decision support.