Abstract:Text-to-video (T2V) generation is a rapidly growing research area that aims to translate the scenes, objects, and actions within complex video text into a sequence of coherent visual frames. We present FlowZero, a novel framework that combines Large Language Models (LLMs) with image diffusion models to generate temporally-coherent videos. FlowZero uses LLMs to understand complex spatio-temporal dynamics from text, where LLMs can generate a comprehensive dynamic scene syntax (DSS) containing scene descriptions, object layouts, and background motion patterns. These elements in DSS are then used to guide the image diffusion model for video generation with smooth object motions and frame-to-frame coherence. Moreover, FlowZero incorporates an iterative self-refinement process, enhancing the alignment between the spatio-temporal layouts and the textual prompts for the videos. To enhance global coherence, we propose enriching the initial noise of each frame with motion dynamics to control the background movement and camera motion adaptively. By using spatio-temporal syntaxes to guide the diffusion process, FlowZero achieves improvement in zero-shot video synthesis, generating coherent videos with vivid motion.
Abstract:In this paper, we study a challenging task of zero-shot referring image segmentation. This task aims to identify the instance mask that is most related to a referring expression without training on pixel-level annotations. Previous research takes advantage of pre-trained cross-modal models, e.g., CLIP, to align instance-level masks with referring expressions. %Yet, CLIP only considers image-text pair level alignment, which neglects fine-grained image region and complex sentence matching. Yet, CLIP only considers the global-level alignment of image-text pairs, neglecting fine-grained matching between the referring sentence and local image regions. To address this challenge, we introduce a Text Augmented Spatial-aware (TAS) zero-shot referring image segmentation framework that is training-free and robust to various visual encoders. TAS incorporates a mask proposal network for instance-level mask extraction, a text-augmented visual-text matching score for mining the image-text correlation, and a spatial rectifier for mask post-processing. Notably, the text-augmented visual-text matching score leverages a $P$ score and an $N$-score in addition to the typical visual-text matching score. The $P$-score is utilized to close the visual-text domain gap through a surrogate captioning model, where the score is computed between the surrogate model-generated texts and the referring expression. The $N$-score considers the fine-grained alignment of region-text pairs via negative phrase mining, encouraging the masked image to be repelled from the mined distracting phrases. Extensive experiments are conducted on various datasets, including RefCOCO, RefCOCO+, and RefCOCOg. The proposed method clearly outperforms state-of-the-art zero-shot referring image segmentation methods.
Abstract:Modern deep learning systems are data-hungry. Learning with web data is one of the feasible solutions, but will introduce label noise inevitably, which can hinder the performance of deep neural networks. Sample selection is an effective way to deal with label noise. The key is to separate clean samples based on some criterion. Previous methods pay more attention to the small loss criterion where small-loss samples are regarded as clean ones. Nevertheless, such a strategy relies on the learning dynamics of each data instance. Some noisy samples are still memorized due to frequently occurring corrupted learning patterns. To tackle this problem, a training-free surrogate model is preferred, freeing from the effect of memorization. In this work, we propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically. CLIP brings external knowledge to facilitate the selection of clean samples with its ability of text-image alignment. Furthermore, a margin adaptive loss is designed to regularize the selection bias introduced by CLIP, providing robustness to label noise. We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets. Our method achieves significant improvement without CLIP involved during the inference stage.
Abstract:We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions while preserving motion diversity.Despite the recent significant process in text-based human motion generation,existing methods often prioritize fitting training motions at the expense of action diversity. Consequently, striking a balance between motion quality and diversity remains an unresolved challenge. This problem is compounded by two key factors: 1) the lack of diversity in motion-caption pairs in existing benchmarks and 2) the unilateral and biased semantic understanding of the text prompt, focusing primarily on the verb component while neglecting the nuanced distinctions indicated by other words.In response to the first issue, we construct a large-scale Wild Motion-Caption dataset (WMC) to extend the restricted action boundary of existing well-annotated datasets, enabling the learning of diverse motions through a more extensive range of actions. To this end, a motion BLIP is trained upon a pretrained vision-language model, then we automatically generate diverse motion captions for the collected motion sequences. As a result, we finally build a dataset comprising 8,888 motions coupled with 141k text.To comprehensively understand the text command, we propose a Hierarchical Semantic Aggregation (HSA) module to capture the fine-grained semantics.Finally,we involve the above two designs into an effective Motion Discrete Diffusion (MDD) framework to strike a balance between motion quality and diversity. Extensive experiments on HumanML3D and KIT-ML show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity. Dataset, code, and pretrained models will be released to reproduce all of our results.
Abstract:Recent advancements in natural language and Large Language Models (LLMs) have enabled AI agents to simulate human-like interactions within virtual worlds. However, these interactions still face limitations in complexity and flexibility, particularly in scenarios involving multiple characters and novel objects. Pre-defining all interactable objects in the agent's world model presents challenges, and conveying implicit intentions to multiple characters through complex interactions remains difficult. To address these issues, we propose integrating virtual Game Masters (GMs) into the agent's world model, drawing inspiration from Tabletop Role-Playing Games (TRPGs). GMs play a crucial role in overseeing information, estimating players' intentions, providing environment descriptions, and offering feedback, compensating for current world model deficiencies. To facilitate future explorations for complex interactions, we introduce a benchmark named Tachikuma, comprising a Multiple character and novel Object based interaction Estimation (MOE) task and a supporting dataset. MOE challenges models to understand characters' intentions and accurately determine their actions within intricate contexts involving multi-character and novel object interactions. Besides, the dataset captures log data from real-time communications during gameplay, providing diverse, grounded, and complex interactions for further explorations. Finally, we present a simple prompting baseline and evaluate its performance, demonstrating its effectiveness in enhancing interaction understanding. We hope that our dataset and task will inspire further research in complex interactions with natural language, fostering the development of more advanced AI agents.
Abstract:In real-world scenarios, collected and annotated data often exhibit the characteristics of multiple classes and long-tailed distribution. Additionally, label noise is inevitable in large-scale annotations and hinders the applications of learning-based models. Although many deep learning based methods have been proposed for handling long-tailed multi-label recognition or label noise respectively, learning with noisy labels in long-tailed multi-label visual data has not been well-studied because of the complexity of long-tailed distribution entangled with multi-label correlation. To tackle such a critical yet thorny problem, this paper focuses on reducing noise based on some inherent properties of multi-label classification and long-tailed learning under noisy cases. In detail, we propose a Stitch-Up augmentation to synthesize a cleaner sample, which directly reduces multi-label noise by stitching up multiple noisy training samples. Equipped with Stitch-Up, a Heterogeneous Co-Learning framework is further designed to leverage the inconsistency between long-tailed and balanced distributions, yielding cleaner labels for more robust representation learning with noisy long-tailed data. To validate our method, we build two challenging benchmarks, named VOC-MLT-Noise and COCO-MLT-Noise, respectively. Extensive experiments are conducted to demonstrate the effectiveness of our proposed method. Compared to a variety of baselines, our method achieves superior results.
Abstract:This paper presents a whitening-based contrastive learning method for sentence embedding learning (WhitenedCSE), which combines contrastive learning with a novel shuffled group whitening. Generally, contrastive learning pulls distortions of a single sample (i.e., positive samples) close and push negative samples far away, correspondingly facilitating the alignment and uniformity in the feature space. A popular alternative to the "pushing'' operation is whitening the feature space, which scatters all the samples for uniformity. Since the whitening and the contrastive learning have large redundancy w.r.t. the uniformity, they are usually used separately and do not easily work together. For the first time, this paper integrates whitening into the contrastive learning scheme and facilitates two benefits. 1) Better uniformity. We find that these two approaches are not totally redundant but actually have some complementarity due to different uniformity mechanism. 2) Better alignment. We randomly divide the feature into multiple groups along the channel axis and perform whitening independently within each group. By shuffling the group division, we derive multiple distortions of a single sample and thus increase the positive sample diversity. Consequently, using multiple positive samples with enhanced diversity further improves contrastive learning due to better alignment. Extensive experiments on seven semantic textual similarity tasks show our method achieves consistent improvement over the contrastive learning baseline and sets new states of the art, e.g., 78.78\% (+2.53\% based on BERT\ba) Spearman correlation on STS tasks.
Abstract:Misalignment between the outputs of a vision-language (VL) model and task goal hinders its deployment. This issue can worsen when there are distribution shifts between the training and test data. To address this problem, prevailing fully test-time adaptation~(TTA) methods bootstrap themselves through entropy minimization. However, minimizing the entropy of the predictions makes the model overfit to incorrect output distributions of itself. In this work, we propose TTA with feedback to avoid such overfitting and align the model with task goals. Specifically, we adopt CLIP as reward model to provide feedback for VL models during test time in various tasks, including image classification, image-text retrieval, and image captioning. Given a single test sample, the model aims to maximize CLIP reward through reinforcement learning. We adopt a reward design with the average CLIP score of sampled candidates as the baseline. This design is simple and surprisingly effective when combined with various task-specific sampling strategies. The entire system is flexible, allowing the reward model to be extended with multiple CLIP models. Plus, a momentum buffer can be used to memorize and leverage the learned knowledge from multiple test samples. Extensive experiments demonstrate that our method significantly improves different VL models after TTA.
Abstract:Pre-trained vision-language models are the de-facto foundation models for various downstream tasks. However, this trend has not extended to the field of scene text recognition (STR), despite the potential of CLIP to serve as a powerful scene text reader. CLIP can robustly identify regular (horizontal) and irregular (rotated, curved, blurred, or occluded) text in natural images. With such merits, we introduce CLIP4STR, a simple yet effective STR method built upon image and text encoders of CLIP. It has two encoder-decoder branches: a visual branch and a cross-modal branch. The visual branch provides an initial prediction based on the visual feature, and the cross-modal branch refines this prediction by addressing the discrepancy between the visual feature and text semantics. To fully leverage the capabilities of both branches, we design a dual predict-and-refine decoding scheme for inference. CLIP4STR achieves new state-of-the-art performance on 11 STR benchmarks. Additionally, a comprehensive empirical study is provided to enhance the understanding of the adaptation of CLIP to STR. We believe our method establishes a simple but strong baseline for future STR research with VL models.
Abstract:In this paper, we tackle the problem of sign language translation (SLT) without gloss annotations. Although intermediate representation like gloss has been proven effective, gloss annotations are hard to acquire, especially in large quantities. This limits the domain coverage of translation datasets, thus handicapping real-world applications. To mitigate this problem, we design the Gloss-Free End-to-end sign language translation framework (GloFE). Our method improves the performance of SLT in the gloss-free setting by exploiting the shared underlying semantics of signs and the corresponding spoken translation. Common concepts are extracted from the text and used as a weak form of intermediate representation. The global embedding of these concepts is used as a query for cross-attention to find the corresponding information within the learned visual features. In a contrastive manner, we encourage the similarity of query results between samples containing such concepts and decrease those that do not. We obtained state-of-the-art results on large-scale datasets, including OpenASL and How2Sign. The code and model will be available at https://github.com/HenryLittle/GloFE.