Abstract:We provide a detailed analysis of convolutional neural networks which are pre-trained on the task of object detection. To this end, we train detectors on large datasets like OpenImagesV4, ImageNet Localization and COCO. We analyze how well their features generalize to tasks like image classification, semantic segmentation and object detection on small datasets like PASCAL-VOC, Caltech-256, SUN-397, Flowers-102 etc. Some important conclusions from our analysis are --- 1) Pre-training on large detection datasets is crucial for fine-tuning on small detection datasets, especially when precise localization is needed. For example, we obtain 81.1% mAP on the PASCAL-VOC dataset at 0.7 IoU after pre-training on OpenImagesV4, which is 7.6% better than the recently proposed DeformableConvNetsV2 which uses ImageNet pre-training. 2) Detection pre-training also benefits other localization tasks like semantic segmentation but adversely affects image classification. 3) Features for images (like avg. pooled Conv5) which are similar in the object detection feature space are likely to be similar in the image classification feature space but the converse is not true. 4) Visualization of features reveals that detection neurons have activations over an entire object, while activations for classification networks typically focus on parts. Therefore, detection networks are poor at classification when multiple instances are present in an image or when an instance only covers a small fraction of an image.
Abstract:This paper presents a new task, the grounding of spatio-temporal identifying descriptions in videos. Previous work suggests potential bias in existing datasets and emphasizes the need for a new data creation schema to better model linguistic structure. We introduce a new data collection scheme based on grammatical constraints for surface realization to enable us to investigate the problem of grounding spatio-temporal identifying descriptions in videos. We then propose a two-stream modular attention network that learns and grounds spatio-temporal identifying descriptions based on appearance and motion. We show that motion modules help to ground motion-related words and also help to learn in appearance modules because modular neural networks resolve task interference between modules. Finally, we propose a future challenge and a need for a robust system arising from replacing ground truth visual annotations with automatic video object detector and temporal event localization.
Abstract:Incremental learning targets at achieving good performance on new categories without forgetting old ones. Knowledge distillation has been shown critical in preserving the performance on old classes. Conventional methods, however, sequentially distill knowledge only from the last model, leading to performance degradation on the old classes in later incremental learning steps. In this paper, we propose a multi-model and multi-level knowledge distillation strategy. Instead of sequentially distilling knowledge only from the last model, we directly leverage all previous model snapshots. In addition, we incorporate an auxiliary distillation to further preserve knowledge encoded at the intermediate feature levels. To make the model more memory efficient, we adapt mask based pruning to reconstruct all previous models with a small memory footprint. Experiments on standard incremental learning benchmarks show that our method preserves the knowledge on old classes better and improves the overall performance over standard distillation techniques.
Abstract:We propose StartNet to address Online Detection of Action Start (ODAS) where action starts and their associated categories are detected in untrimmed, streaming videos. Previous methods aim to localize action starts by learning feature representations that can directly separate the start point from its preceding background. It is challenging due to the subtle appearance difference near the action starts and the lack of training data. Instead, StartNet decomposes ODAS into two stages: action classification (using ClsNet) and start point localization (using LocNet). ClsNet focuses on per-frame labeling and predicts action score distributions online. Based on the predicted action scores of the past and current frames, LocNet conducts class-agnostic start detection by optimizing long-term localization rewards using policy gradient methods. The proposed framework is validated on two large-scale datasets, THUMOS'14 and ActivityNet. The experimental results show that StartNet significantly outperforms the state-of-the-art by 15%-30% p-mAP under the offset tolerance of 1-10 seconds on THUMOS'14, and achieves comparable performance on ActivityNet with 10 times smaller time offset.
Abstract:Visual compatibility is critical for fashion analysis, yet is missing in existing fashion image synthesis systems. In this paper, we propose to explicitly model visual compatibility through fashion image inpainting. To this end, we present Fashion Inpainting Networks (FiNet), a two-stage image-to-image generation framework that is able to perform compatible and diverse inpainting. Disentangling the generation of shape and appearance to ensure photorealistic results, our framework consists of a shape generation network and an appearance generation network. More importantly, for each generation network, we introduce two encoders interacting with one another to learn latent code in a shared compatibility space. The latent representations are jointly optimized with the corresponding generation network to condition the synthesis process, encouraging a diverse set of generated results that are visually compatible with existing fashion garments. In addition, our framework is readily extended to clothing reconstruction and fashion transfer, with impressive results. Extensive experiments with comparisons with state-of-the-art approaches on fashion synthesis task quantitatively and qualitatively demonstrate the effectiveness of our method.
Abstract:We present Temporal Aggregation Network (TAN) which decomposes 3D convolutions into spatial and temporal aggregation blocks. By stacking spatial and temporal convolutions repeatedly, TAN forms a deep hierarchical representation for capturing spatio-temporal information in videos. Since we do not apply 3D convolutions in each layer but only apply temporal aggregation blocks once after each spatial downsampling layer in the network, we significantly reduce the model complexity. The use of dilated convolutions at different resolutions of the network helps in aggregating multi-scale spatio-temporal information efficiently. Experiments show that our model is well suited for dense multi-label action recognition, which is a challenging sub-topic of action recognition that requires predicting multiple action labels in each frame. We outperform state-of-the-art methods by 5% and 3% on the Charades and Multi-THUMOS dataset respectively.
Abstract:We propose a novel approach for generating region proposals for performing face-detection. Instead of classifying anchor boxes using features from a pixel in the convolutional feature map, we adopt a pooling-based approach for generating region proposals. However, pooling hundreds of thousands of anchors which are evaluated for generating proposals becomes a computational bottleneck during inference. To this end, an efficient anchor placement strategy for reducing the number of anchor-boxes is proposed. We then show that proposals generated by our network (Floating Anchor Region Proposal Network, FA-RPN) are better than RPN for generating region proposals for face detection. We discuss several beneficial features of FA-RPN proposals like iterative refinement, placement of fractional anchors and changing anchors which can be enabled without making any changes to the trained model. Our face detector based on FA-RPN obtains 89.4% mAP with a ResNet-50 backbone on the WIDER dataset.
Abstract:We propose novel Stacked Spatio-Temporal Graph Convolutional Networks (Stacked-STGCN) for action segmentation, i.e., predicting and localizing a sequence of actions over long videos. We extend the Spatio-Temporal Graph Convolutional Network (STGCN) originally proposed for skeleton-based action recognition to enable nodes with different characteristics (e.g., scene, actor, object, action, etc.), feature descriptors with varied lengths, and arbitrary temporal edge connections to account for large graph deformation commonly associated with complex activities. We further introduce the stacked hourglass architecture to STGCN to leverage the advantages of an encoder-decoder design for improved generalization performance and localization accuracy. We explore various descriptors such as frame-level VGG, segment-level I3D, RCNN-based object, etc. as node descriptors to enable action segmentation based on joint inference over comprehensive contextual information. We show results on CAD120 (which provides pre-computed node features and edge weights for fair performance comparison across algorithms) as well as a more complex real-world activity dataset, Charades. Our Stacked-STGCN in general achieves 4.0% performance improvement over the best reported results in F1 score on CAD120 and 1.3% in mAP on Charades using VGG features.
Abstract:This paper describes AutoFocus, an efficient multi-scale inference algorithm for deep-learning based object detectors. Instead of processing an entire image pyramid, AutoFocus adopts a coarse to fine approach and only processes regions which are likely to contain small objects at finer scales. This is achieved by predicting category agnostic segmentation maps for small objects at coarser scales, called FocusPixels. FocusPixels can be predicted with high recall, and in many cases, they only cover a small fraction of the entire image. To make efficient use of FocusPixels, an algorithm is proposed which generates compact rectangular FocusChips which enclose FocusPixels. The detector is only applied inside FocusChips, which reduces computation while processing finer scales. Different types of error can arise when detections from FocusChips of multiple scales are combined, hence techniques to correct them are proposed. AutoFocus obtains an mAP of 47.9% (68.3% at 50% overlap) on the COCO test-dev set while processing 6.4 images per second on a Titan X (Pascal) GPU. This is 2.5X faster than our multi-scale baseline detector and matches its mAP. The number of pixels processed in the pyramid can be reduced by 5X with a 1% drop in mAP. AutoFocus obtains more than 10% mAP gain compared to RetinaNet but runs at the same speed with the same ResNet-101 backbone.
Abstract:This research strives for natural language moment retrieval in long, untrimmed video streams. The problem nevertheless is not trivial especially when a video contains multiple moments of interests and the language describes complex temporal dependencies, which often happens in real scenarios. We identify two crucial challenges: semantic misalignment and structural misalignment. However, existing approaches treat different moments separately and do not explicitly model complex moment-wise temporal relations. In this paper, we present Moment Alignment Network (MAN), a novel framework that unifies the candidate moment encoding and temporal structural reasoning in a single-shot feed-forward network. MAN naturally assigns candidate moment representations aligned with language semantics over different temporal locations and scales. Most importantly, we propose to explicitly model moment-wise temporal relations as a structured graph and devise an iterative graph adjustment network to jointly learn the best structure in an end-to-end manner. We evaluate the proposed approach on two challenging public benchmarks Charades-STA and DiDeMo, where our MAN significantly outperforms the state-of-the-art by a large margin.