Abstract:With the growing use of large language models(LLMs) as evaluators, their application has expanded to code evaluation tasks, where they assess the correctness of generated code without relying on reference implementations. While this offers scalability and flexibility, it also raises a critical, unresolved question: Can LLM judges fairly and robustly evaluate semantically equivalent code with superficial variations? Functionally correct code often exhibits variations-such as differences in variable names, comments, or formatting-that should not influence its correctness. Yet, whether LLM judges can reliably handle these variations remains unclear. We present the first comprehensive study of this issue, defining six types of potential bias in code evaluation and revealing their systematic impact on LLM judges. Across five programming languages and multiple LLMs, we empirically demonstrate that all tested LLM judges are susceptible to both positive and negative biases, resulting in inflated or unfairly low scores. Moreover, we observe that LLM judges remain vulnerable to these biases even when prompted to generate test cases before scoring, highlighting the need for more robust code evaluation methods.
Abstract:Recently, large vision-language models (LVLMs) have emerged as the preferred tools for judging text-image alignment, yet their robustness along the visual modality remains underexplored. This work is the first study to address a key research question: Can adversarial visual manipulations systematically fool LVLM judges into assigning unfairly inflated scores? We define potential image induced biases within the context of T2I evaluation and examine how these biases affect the evaluations of LVLM judges. Moreover, we introduce a novel, fine-grained, multi-domain meta-evaluation benchmark named FRAME, which is deliberately constructed to exhibit diverse score distributions. By introducing the defined biases into the benchmark, we reveal that all tested LVLM judges exhibit vulnerability across all domains, consistently inflating scores for manipulated images. Further analysis reveals that combining multiple biases amplifies their effects, and pairwise evaluations are similarly susceptible. Moreover, we observe that visual biases persist under prompt-based mitigation strategies, highlighting the vulnerability of current LVLM evaluation systems and underscoring the urgent need for more robust LVLM judges.
Abstract:Recent advances in LLM agents have largely built on reasoning backbones like ReAct, which interleave thought and action in complex environments. However, ReAct often produces ungrounded or incoherent reasoning steps, leading to misalignment between the agent's actual state and goal. Our analysis finds that this stems from ReAct's inability to maintain consistent internal beliefs and goal alignment, causing compounding errors and hallucinations. To address this, we introduce ReflAct, a novel backbone that shifts reasoning from merely planning next actions to continuously reflecting on the agent's state relative to its goal. By explicitly grounding decisions in states and enforcing ongoing goal alignment, ReflAct dramatically improves strategic reliability. This design delivers substantial empirical gains: ReflAct surpasses ReAct by 27.7% on average, achieving a 93.3% success rate in ALFWorld. Notably, ReflAct even outperforms ReAct with added enhancement modules (e.g., Reflexion, WKM), showing that strengthening the core reasoning backbone is key to reliable agent performance.
Abstract:We introduce MultiActor-Audiobook, a zero-shot approach for generating audiobooks that automatically produces consistent, expressive, and speaker-appropriate prosody, including intonation and emotion. Previous audiobook systems have several limitations: they require users to manually configure the speaker's prosody, read each sentence with a monotonic tone compared to voice actors, or rely on costly training. However, our MultiActor-Audiobook addresses these issues by introducing two novel processes: (1) MSP (**Multimodal Speaker Persona Generation**) and (2) LSI (**LLM-based Script Instruction Generation**). With these two processes, MultiActor-Audiobook can generate more emotionally expressive audiobooks with a consistent speaker prosody without additional training. We compare our system with commercial products, through human and MLLM evaluations, achieving competitive results. Furthermore, we demonstrate the effectiveness of MSP and LSI through ablation studies.
Abstract:Various studies have attempted to remove sensitive or private knowledge from a language model to prevent its unauthorized exposure. However, prior studies have overlooked the complex and interconnected nature of knowledge, where related knowledge must be carefully examined. Specifically, they have failed to evaluate whether an unlearning method faithfully erases interconnected knowledge that should be removed, retaining knowledge that appears relevant but exists in a completely different context. To resolve this problem, we first define a new concept called superficial unlearning, which refers to the phenomenon where an unlearning method either fails to erase the interconnected knowledge it should remove or unintentionally erases irrelevant knowledge. Based on the definition, we introduce a new benchmark, FaithUn, to analyze and evaluate the faithfulness of unlearning in real-world knowledge QA settings. Furthermore, we propose a novel unlearning method, KLUE, which updates only knowledge-related neurons to achieve faithful unlearning. KLUE identifies knowledge neurons using an explainability method and updates only those neurons using selected unforgotten samples. Experimental results demonstrate that widely-used unlearning methods fail to ensure faithful unlearning, while our method shows significant effectiveness in real-world QA unlearning.
Abstract:Personalized alignments for individual users have been a long-standing goal in large language models (LLMs). We introduce Drift, a novel framework that personalizes LLMs at decoding time with implicit user preferences. Traditional Reinforcement Learning from Human Feedback (RLHF) requires thousands of annotated examples and expensive gradient updates. In contrast, Drift personalizes LLMs in a training-free manner, using only a few dozen examples to steer a frozen model through efficient preference modeling. Our approach models user preferences as a composition of predefined, interpretable attributes and aligns them at decoding time to enable personalized generation. Experiments on both a synthetic persona dataset (Perspective) and a real human-annotated dataset (PRISM) demonstrate that Drift significantly outperforms RLHF baselines while using only 50-100 examples. Our results and analysis show that Drift is both computationally efficient and interpretable.
Abstract:Despite the fact that large language models (LLMs) show exceptional skill in instruction following tasks, this strength can turn into a vulnerability when the models are required to disregard certain instructions. Instruction-following tasks typically involve a clear task description and input text containing the target data to be processed. However, when the input itself resembles an instruction, confusion may arise, even if there is explicit prompting to distinguish between the task instruction and the input. We refer to this phenomenon as instructional distraction. In this paper, we introduce a novel benchmark, named DIM-Bench, specifically designed to assess LLMs' performance under instructional distraction. The benchmark categorizes real-world instances of instructional distraction and evaluates LLMs across four instruction tasks: rewriting, proofreading, translation, and style transfer -- alongside five input tasks: reasoning, code generation, mathematical reasoning, bias detection, and question answering. Our experimental results reveal that even the most advanced LLMs are susceptible to instructional distraction, often failing to accurately follow user intent in such cases.
Abstract:Inductive reasoning - the process of inferring general rules from a small number of observations - is a fundamental aspect of human intelligence. Recent works suggest that large language models (LLMs) can engage in inductive reasoning by sampling multiple hypotheses about the rules and selecting the one that best explains the observations. However, due to the IID sampling, semantically redundant hypotheses are frequently generated, leading to significant wastage of compute. In this paper, we 1) demonstrate that increasing the temperature to enhance the diversity is limited due to text degeneration issue, and 2) propose a novel method to improve the diversity while maintaining text quality. We first analyze the effect of increasing the temperature parameter, which is regarded as the LLM's diversity control, on IID hypotheses. Our analysis shows that as temperature rises, diversity and accuracy of hypotheses increase up to a certain point, but this trend saturates due to text degeneration. To generate hypotheses that are more semantically diverse and of higher quality, we propose a novel approach inspired by human inductive reasoning, which we call Mixture of Concepts (MoC). When applied to several inductive reasoning benchmarks, MoC demonstrated significant performance improvements compared to standard IID sampling and other approaches.
Abstract:Recently, discrete diffusion language models have demonstrated promising results in NLP. However, there has been limited research on integrating Pretrained Language Models (PLMs) into discrete diffusion models, resulting in underwhelming performance in downstream NLP generation tasks. This integration is particularly challenging because of the discrepancy between step-wise denoising strategy of diffusion models and single-step mask prediction approach of MLM-based PLMs. In this paper, we introduce Diffusion-EAGS, a novel approach that effectively integrates PLMs with the diffusion models. Furthermore, as it is challenging for PLMs to determine where to apply denoising during the diffusion process, we integrate an entropy tracking module to assist them. Finally, we propose entropy-based noise scheduling in the forward process to improve the effectiveness of entropy-adaptive sampling throughout the generation phase. Experimental results show that Diffusion-EAGS outperforms existing diffusion baselines in downstream generation tasks, achieving high text quality and diversity with precise token-level control. We also show that our model is capable of adapting to bilingual and low-resource settings, which are common in real-world applications.
Abstract:In line with the principle of honesty, there has been a growing effort to train large language models (LLMs) to generate outputs containing epistemic markers. However, evaluation in the presence of epistemic markers has been largely overlooked, raising a critical question: Could the use of epistemic markers in LLM-generated outputs lead to unintended negative consequences? To address this, we present EMBER, a benchmark designed to assess the robustness of LLM-judges to epistemic markers in both single and pairwise evaluation settings. Our findings, based on evaluations using EMBER, reveal that all tested LLM-judges, including GPT-4o, show a notable lack of robustness in the presence of epistemic markers. Specifically, we observe a negative bias toward epistemic markers, with a stronger bias against markers expressing uncertainty. This suggests that LLM-judges are influenced by the presence of these markers and do not focus solely on the correctness of the content.