Abstract:Recently, large vision-language models (LVLMs) have emerged as the preferred tools for judging text-image alignment, yet their robustness along the visual modality remains underexplored. This work is the first study to address a key research question: Can adversarial visual manipulations systematically fool LVLM judges into assigning unfairly inflated scores? We define potential image induced biases within the context of T2I evaluation and examine how these biases affect the evaluations of LVLM judges. Moreover, we introduce a novel, fine-grained, multi-domain meta-evaluation benchmark named FRAME, which is deliberately constructed to exhibit diverse score distributions. By introducing the defined biases into the benchmark, we reveal that all tested LVLM judges exhibit vulnerability across all domains, consistently inflating scores for manipulated images. Further analysis reveals that combining multiple biases amplifies their effects, and pairwise evaluations are similarly susceptible. Moreover, we observe that visual biases persist under prompt-based mitigation strategies, highlighting the vulnerability of current LVLM evaluation systems and underscoring the urgent need for more robust LVLM judges.
Abstract:Recently, directly using large language models (LLMs) has been shown to be the most reliable method to evaluate QA models. However, it suffers from limited interpretability, high cost, and environmental harm. To address these, we propose to use soft EM with entity-driven answer set expansion. Our approach expands the gold answer set to include diverse surface forms, based on the observation that the surface forms often follow particular patterns depending on the entity type. The experimental results show that our method outperforms traditional evaluation methods by a large margin. Moreover, the reliability of our evaluation method is comparable to that of LLM-based ones, while offering the benefits of high interpretability and reduced environmental harm.