Abstract:Efficient large-scale inference of transformer-based large language models (LLMs) remains a fundamental systems challenge, frequently requiring multi-GPU parallelism to meet stringent latency and throughput targets. Conventional tensor parallelism decomposes matrix operations across devices but introduces substantial inter-GPU synchronization, leading to communication bottlenecks and degraded scalability. We propose the Parallel Track (PT) Transformer, a novel architectural paradigm that restructures computation to minimize cross-device dependencies. PT achieves up to a 16x reduction in synchronization operations relative to standard tensor parallelism, while maintaining competitive model quality in our experiments. We integrate PT into two widely adopted LLM serving stacks-Tensor-RT-LLM and vLLM-and report consistent improvements in serving efficiency, including up to 15-30% reduced time to first token, 2-12% reduced time per output token, and up to 31.90% increased throughput in both settings.




Abstract:We present foundation language models developed to power Apple Intelligence features, including a ~3 billion parameter model designed to run efficiently on devices and a large server-based language model designed for Private Cloud Compute. These models are designed to perform a wide range of tasks efficiently, accurately, and responsibly. This report describes the model architecture, the data used to train the model, the training process, how the models are optimized for inference, and the evaluation results. We highlight our focus on Responsible AI and how the principles are applied throughout the model development.