Alert button
Picture for Kaushik Murali

Kaushik Murali

Alert button

Towards Automating Retinoscopy for Refractive Error Diagnosis

Aug 10, 2022
Aditya Aggarwal, Siddhartha Gairola, Uddeshya Upadhyay, Akshay P Vasishta, Diwakar Rao, Aditya Goyal, Kaushik Murali, Nipun Kwatra, Mohit Jain

Figure 1 for Towards Automating Retinoscopy for Refractive Error Diagnosis
Figure 2 for Towards Automating Retinoscopy for Refractive Error Diagnosis
Figure 3 for Towards Automating Retinoscopy for Refractive Error Diagnosis
Figure 4 for Towards Automating Retinoscopy for Refractive Error Diagnosis

Refractive error is the most common eye disorder and is the key cause behind correctable visual impairment, responsible for nearly 80% of the visual impairment in the US. Refractive error can be diagnosed using multiple methods, including subjective refraction, retinoscopy, and autorefractors. Although subjective refraction is the gold standard, it requires cooperation from the patient and hence is not suitable for infants, young children, and developmentally delayed adults. Retinoscopy is an objective refraction method that does not require any input from the patient. However, retinoscopy requires a lens kit and a trained examiner, which limits its use for mass screening. In this work, we automate retinoscopy by attaching a smartphone to a retinoscope and recording retinoscopic videos with the patient wearing a custom pair of paper frames. We develop a video processing pipeline that takes retinoscopic videos as input and estimates the net refractive error based on our proposed extension of the retinoscopy mathematical model. Our system alleviates the need for a lens kit and can be performed by an untrained examiner. In a clinical trial with 185 eyes, we achieved a sensitivity of 91.0% and specificity of 74.0% on refractive error diagnosis. Moreover, the mean absolute error of our approach was 0.75$\pm$0.67D on net refractive error estimation compared to subjective refraction measurements. Our results indicate that our approach has the potential to be used as a retinoscopy-based refractive error screening tool in real-world medical settings.

* This paper is accepted for publication in IMWUT 2022 
Viaarxiv icon

Keratoconus Classifier for Smartphone-based Corneal Topographer

May 07, 2022
Siddhartha Gairola, Pallavi Joshi, Anand Balasubramaniam, Kaushik Murali, Nipun Kwatra, Mohit Jain

Figure 1 for Keratoconus Classifier for Smartphone-based Corneal Topographer
Figure 2 for Keratoconus Classifier for Smartphone-based Corneal Topographer
Figure 3 for Keratoconus Classifier for Smartphone-based Corneal Topographer
Figure 4 for Keratoconus Classifier for Smartphone-based Corneal Topographer

Keratoconus is a severe eye disease that leads to deformation of the cornea. It impacts people aged 10-25 years and is the leading cause of blindness in that demography. Corneal topography is the gold standard for keratoconus diagnosis. It is a non-invasive process performed using expensive and bulky medical devices called corneal topographers. This makes it inaccessible to large populations, especially in the Global South. Low-cost smartphone-based corneal topographers, such as SmartKC, have been proposed to make keratoconus diagnosis accessible. Similar to medical-grade topographers, SmartKC outputs curvature heatmaps and quantitative metrics that need to be evaluated by doctors for keratoconus diagnosis. An automatic scheme for evaluation of these heatmaps and quantitative values can play a crucial role in screening keratoconus in areas where doctors are not available. In this work, we propose a dual-head convolutional neural network (CNN) for classifying keratoconus on the heatmaps generated by SmartKC. Since SmartKC is a new device and only had a small dataset (114 samples), we developed a 2-stage transfer learning strategy -- using historical data collected from a medical-grade topographer and a subset of SmartKC data -- to satisfactorily train our network. This, combined with our domain-specific data augmentations, achieved a sensitivity of 91.3% and a specificity of 94.2%.

* 4 pages 
Viaarxiv icon