Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Picture for Joshua Yao-Yu Lin

Joshua Yao-Yu Lin

for the LSST Dark Energy Science Collaboration

VLBInet: Radio Interferometry Data Classification for EHT with Neural Networks


Oct 14, 2021
Joshua Yao-Yu Lin, Dominic W. Pesce, George N. Wong, Ajay Uppili Arasanipalai, Ben S. Prather, Charles F. Gammie

* 10 pages, 7 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

AGNet: Weighing Black Holes with Deep Learning


Aug 17, 2021
Joshua Yao-Yu Lin, Sneh Pandya, Devanshi Pratap, Xin Liu, Matias Carrasco Kind, Volodymyr Kindratenko

* 8 pages, 7 figures, 1 table, submitting to MNRAS 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Inferring Black Hole Properties from Astronomical Multivariate Time Series with Bayesian Attentive Neural Processes


Jun 18, 2021
Ji Won Park, Ashley Villar, Yin Li, Yan-Fei Jiang, Shirley Ho, Joshua Yao-Yu Lin, Philip J. Marshall, Aaron Roodman

* 6 pages, 4 figures, 1 table, written for non-astronomers, submitted to the ICML 2021 Time Series and Uncertainty and Robustness in Deep Learning Workshops. Comments welcome! Added affiliations and references for Fig 1 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Deep Learning Approach for Active Anomaly Detection of Extragalactic Transients


Mar 22, 2021
V. Ashley Villar, Miles Cranmer, Edo Berger, Gabriella Contardo, Shirley Ho, Griffin Hosseinzadeh, Joshua Yao-Yu Lin

* 13 pages,9 figures, submitted to AAS Journals. Comments welcome! 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

AGNet: Weighing Black Holes with Machine Learning


Dec 01, 2020
Joshua Yao-Yu Lin, Sneh Pandya, Devanshi Pratap, Xin Liu, Matias Carrasco Kind

* 5 pages, 3 figures, 1 table. Accepted to the Machine Learning and the Physical Sciences Workshop at NeurIPS 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant


Nov 30, 2020
Ji Won Park, Sebastian Wagner-Carena, Simon Birrer, Philip J. Marshall, Joshua Yao-Yu Lin, Aaron Roodman

* 21 pages (+2 appendix), 17 figures. To be submitted to ApJ. Code at https://github.com/jiwoncpark/h0rton 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning Principle of Least Action with Reinforcement Learning


Nov 26, 2020
Zehao Jin, Joshua Yao-Yu Lin, Siao-Fong Li

* 4 pages, 4 figures, preprint. Comments welcome!!! 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Anomaly Detection for Multivariate Time Series of Exotic Supernovae


Oct 21, 2020
V. Ashley Villar, Miles Cranmer, Gabriella Contardo, Shirley Ho, Joshua Yao-Yu Lin

* 6 pages, 2 figures, written for non-astronomers, submitted to the NeurIPS workshop Machine Learning and the Physical Sciences. Comments welcome!! 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email