Abstract:Systematic reviews are a key component of evidence-based medicine, playing a critical role in synthesizing existing research evidence and guiding clinical decisions. However, with the rapid growth of research publications, conducting systematic reviews has become increasingly burdensome, with title and abstract screening being one of the most time-consuming and resource-intensive steps. To mitigate this issue, we designed a two-stage dynamic few-shot learning (DFSL) approach aimed at improving the efficiency and performance of large language models (LLMs) in the title and abstract screening task. Specifically, this approach first uses a low-cost LLM for initial screening, then re-evaluates low-confidence instances using a high-performance LLM, thereby enhancing screening performance while controlling computational costs. We evaluated this approach across 10 systematic reviews, and the results demonstrate its strong generalizability and cost-effectiveness, with potential to reduce manual screening burden and accelerate the systematic review process in practical applications.
Abstract:The rapid growth of medical knowledge and increasing complexity of clinical practice pose challenges. In this context, large language models (LLMs) have demonstrated value; however, inherent limitations remain. Retrieval-augmented generation (RAG) technologies show potential to enhance their clinical applicability. This study reviewed RAG applications in medicine. We found that research primarily relied on publicly available data, with limited application in private data. For retrieval, approaches commonly relied on English-centric embedding models, while LLMs were mostly generic, with limited use of medical-specific LLMs. For evaluation, automated metrics evaluated generation quality and task performance, whereas human evaluation focused on accuracy, completeness, relevance, and fluency, with insufficient attention to bias and safety. RAG applications were concentrated on question answering, report generation, text summarization, and information extraction. Overall, medical RAG remains at an early stage, requiring advances in clinical validation, cross-linguistic adaptation, and support for low-resource settings to enable trustworthy and responsible global use.
Abstract:Natural language processing (NLP) has been traditionally applied to medicine, and generative large language models (LLMs) have become prominent recently. However, the differences between them across different medical tasks remain underexplored. We analyzed 19,123 studies, finding that generative LLMs demonstrate advantages in open-ended tasks, while traditional NLP dominates in information extraction and analysis tasks. As these technologies advance, ethical use of them is essential to ensure their potential in medical applications.