Abstract:Online class-incremental learning aims to enable models to continuously adapt to new classes with limited access to past data, while mitigating catastrophic forgetting. Replay-based methods address this by maintaining a small memory buffer of previous samples, achieving competitive performance. For effective replay under constrained storage, recent approaches leverage distilled data to enhance the informativeness of memory. However, such approaches often involve significant computational overhead due to the use of bi-level optimization. Motivated by these limitations, we introduce Grid-based Patch Sampling (GPS), a lightweight and effective strategy for distilling informative memory samples without relying on a trainable model. GPS generates informative samples by sampling a subset of pixels from the original image, yielding compact low-resolution representations that preserve both semantic content and structural information. During replay, these representations are reassembled to support training and evaluation. Experiments on extensive benchmarks demonstrate that GRS can be seamlessly integrated into existing replay frameworks, leading to 3%-4% improvements in average end accuracy under memory-constrained settings, with limited computational overhead.
Abstract:In the realm of high-frequency data streams, achieving real-time learning within varying memory constraints is paramount. This paper presents Ferret, a comprehensive framework designed to enhance online accuracy of Online Continual Learning (OCL) algorithms while dynamically adapting to varying memory budgets. Ferret employs a fine-grained pipeline parallelism strategy combined with an iterative gradient compensation algorithm, ensuring seamless handling of high-frequency data with minimal latency, and effectively counteracting the challenge of stale gradients in parallel training. To adapt to varying memory budgets, its automated model partitioning and pipeline planning optimizes performance regardless of memory limitations. Extensive experiments across 20 benchmarks and 5 integrated OCL algorithms show Ferret's remarkable efficiency, achieving up to 3.7$\times$ lower memory overhead to reach the same online accuracy compared to competing methods. Furthermore, Ferret consistently outperforms these methods across diverse memory budgets, underscoring its superior adaptability. These findings position Ferret as a premier solution for efficient and adaptive OCL framework in real-time environments.
Abstract:Arrhythmia is a cardiovascular disease that manifests irregular heartbeats. In arrhythmia detection, the electrocardiogram (ECG) signal is an important diagnostic technique. However, manually evaluating ECG signals is a complicated and time-consuming task. With the application of convolutional neural networks (CNNs), the evaluation process has been accelerated and the performance is improved. It is noteworthy that the performance of CNNs heavily depends on their architecture design, which is a complex process grounded on expert experience and trial-and-error. In this paper, we propose a novel approach, Heart-Darts, to efficiently classify the ECG signals by automatically designing the CNN model with the differentiable architecture search (i.e., Darts, a cell-based neural architecture search method). Specifically, we initially search a cell architecture by Darts and then customize a novel CNN model for ECG classification based on the obtained cells. To investigate the efficiency of the proposed method, we evaluate the constructed model on the MIT-BIH arrhythmia database. Additionally, the extensibility of the proposed CNN model is validated on two other new databases. Extensive experimental results demonstrate that the proposed method outperforms several state-of-the-art CNN models in ECG classification in terms of both performance and generalization capability.