Abstract:Despite impressive progress in high-fidelity image synthesis, generative models still struggle with logic-intensive instruction following, exposing a persistent reasoning--execution gap. Meanwhile, closed-source systems (e.g., Nano Banana) have demonstrated strong reasoning-driven image generation, highlighting a substantial gap to current open-source models. We argue that closing this gap requires not merely better visual generators, but executable reasoning: decomposing high-level intents into grounded, verifiable plans that directly steer the generative process. To this end, we propose Unified Thinker, a task-agnostic reasoning architecture for general image generation, designed as a unified planning core that can plug into diverse generators and workflows. Unified Thinker decouples a dedicated Thinker from the image Generator, enabling modular upgrades of reasoning without retraining the entire generative model. We further introduce a two-stage training paradigm: we first build a structured planning interface for the Thinker, then apply reinforcement learning to ground its policy in pixel-level feedback, encouraging plans that optimize visual correctness over textual plausibility. Extensive experiments on text-to-image generation and image editing show that Unified Thinker substantially improves image reasoning and generation quality.
Abstract:Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID