Abstract:This paper introduces MiniCPM4, a highly efficient large language model (LLM) designed explicitly for end-side devices. We achieve this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. Specifically, in terms of model architecture, we propose InfLLM v2, a trainable sparse attention mechanism that accelerates both prefilling and decoding phases for long-context processing. Regarding training data, we propose UltraClean, an efficient and accurate pre-training data filtering and generation strategy, and UltraChat v2, a comprehensive supervised fine-tuning dataset. These datasets enable satisfactory model performance to be achieved using just 8 trillion training tokens. Regarding training algorithms, we propose ModelTunnel v2 for efficient pre-training strategy search, and improve existing post-training methods by introducing chunk-wise rollout for load-balanced reinforcement learning and data-efficient tenary LLM, BitCPM. Regarding inference systems, we propose CPM.cu that integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding. To meet diverse on-device requirements, MiniCPM4 is available in two versions, with 0.5B and 8B parameters, respectively. Sufficient evaluation results show that MiniCPM4 outperforms open-source models of similar size across multiple benchmarks, highlighting both its efficiency and effectiveness. Notably, MiniCPM4-8B demonstrates significant speed improvements over Qwen3-8B when processing long sequences. Through further adaptation, MiniCPM4 successfully powers diverse applications, including trustworthy survey generation and tool use with model context protocol, clearly showcasing its broad usability.
Abstract:In face detection, low-resolution faces, such as numerous small faces of a human group in a crowded scene, are common in dense face prediction tasks. They usually contain limited visual clues and make small faces less distinguishable from the other small objects, which poses great challenge to accurate face detection. Although deep convolutional neural network has significantly promoted the research on face detection recently, current deep face detectors rarely take into account low-resolution faces and are still vulnerable to the real-world scenarios where massive amount of low-resolution faces exist. Consequently, they usually achieve degraded performance for low-resolution face detection. In order to alleviate this problem, we develop an efficient detector termed EfficientSRFace by introducing a feature-level super-resolution reconstruction network for enhancing the feature representation capability of the model. This module plays an auxiliary role in the training process, and can be removed during the inference without increasing the inference time. Extensive experiments on public benchmarking datasets, such as FDDB and WIDER Face, show that the embedded image super-resolution module can significantly improve the detection accuracy at the cost of a small amount of additional parameters and computational overhead, while helping our model achieve competitive performance compared with the state-of-the-arts methods.