Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Domain adaptation strategies for cancer-independent detection of lymph node metastases


Jul 13, 2022
Péter Bándi, Maschenka Balkenhol, Marcory van Dijk, Bram van Ginneken, Jeroen van der Laak, Geert Litjens


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Automated risk classification of colon biopsies based on semantic segmentation of histopathology images


Sep 16, 2021
John-Melle Bokhorsta, Iris D. Nagtegaal, Filippo Fraggetta, Simona Vatrano, Wilma Mesker, Michael Vieth, Jeroen van der Laak, Francesco Ciompi


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

High-resolution Image Registration of Consecutive and Re-stained Sections in Histopathology


Jun 24, 2021
Johannes Lotz, Nick Weiss, Jeroen van der Laak, StefanHeldmann


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Automated Scoring of Nuclear Pleomorphism Spectrum with Pathologist-level Performance in Breast Cancer


Dec 24, 2020
Caner Mercan, Maschenka Balkenhol, Roberto Salgado, Mark Sherman, Philippe Vielh, Willem Vreuls, Antonio Polonia, Hugo M. Horlings, Wilko Weichert, Jodi M. Carter, Peter Bult, Matthias Christgen, Carsten Denkert, Koen van de Vijver, Jeroen van der Laak, Francesco Ciompi

* 16 pages, 11 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

HookNet: multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images


Jun 22, 2020
Mart van Rijthoven, Maschenka Balkenhol, Karina Siliņa, Jeroen van der Laak, Francesco Ciompi


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Detection of prostate cancer in whole-slide images through end-to-end training with image-level labels


Jun 05, 2020
Hans Pinckaers, Wouter Bulten, Jeroen van der Laak, Geert Litjens


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Extending Unsupervised Neural Image Compression With Supervised Multitask Learning


Apr 15, 2020
David Tellez, Diederik Hoppener, Cornelis Verhoef, Dirk Grunhagen, Pieter Nierop, Michal Drozdzal, Jeroen van der Laak, Francesco Ciompi

* Medical Imaging with Deep Learning 2020 (MIDL20) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Artificial Intelligence Assistance Significantly Improves Gleason Grading of Prostate Biopsies by Pathologists


Feb 11, 2020
Wouter Bulten, Maschenka Balkenhol, Jean-Joël Awoumou Belinga, Américo Brilhante, Aslı Çakır, Xavier Farré, Katerina Geronatsiou, Vincent Molinié, Guilherme Pereira, Paromita Roy, Günter Saile, Paulo Salles, Ewout Schaafsma, Joëlle Tschui, Anne-Marie Vos, Hester van Boven, Robert Vink, Jeroen van der Laak, Christina Hulsbergen-van de Kaa, Geert Litjens

* 21 pages, 5 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Automated Gleason Grading of Prostate Biopsies using Deep Learning


Jul 18, 2019
Wouter Bulten, Hans Pinckaers, Hester van Boven, Robert Vink, Thomas de Bel, Bram van Ginneken, Jeroen van der Laak, Christina Hulsbergen-van de Kaa, Geert Litjens

* 13 pages, 6 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>