Alert button
Picture for Jean-Roch Vlimant

Jean-Roch Vlimant

Alert button

Fast Particle-based Anomaly Detection Algorithm with Variational Autoencoder

Nov 28, 2023
Ryan Liu, Abhijith Gandrakota, Jennifer Ngadiuba, Maria Spiropulu, Jean-Roch Vlimant

Viaarxiv icon

Efficient and Robust Jet Tagging at the LHC with Knowledge Distillation

Nov 23, 2023
Ryan Liu, Abhijith Gandrakota, Jennifer Ngadiuba, Maria Spiropulu, Jean-Roch Vlimant

Viaarxiv icon

Progress towards an improved particle flow algorithm at CMS with machine learning

Mar 30, 2023
Farouk Mokhtar, Joosep Pata, Javier Duarte, Eric Wulff, Maurizio Pierini, Jean-Roch Vlimant

Figure 1 for Progress towards an improved particle flow algorithm at CMS with machine learning
Figure 2 for Progress towards an improved particle flow algorithm at CMS with machine learning
Figure 3 for Progress towards an improved particle flow algorithm at CMS with machine learning
Figure 4 for Progress towards an improved particle flow algorithm at CMS with machine learning
Viaarxiv icon

Data Science and Machine Learning in Education

Jul 19, 2022
Gabriele Benelli, Thomas Y. Chen, Javier Duarte, Matthew Feickert, Matthew Graham, Lindsey Gray, Dan Hackett, Phil Harris, Shih-Chieh Hsu, Gregor Kasieczka, Elham E. Khoda, Matthias Komm, Mia Liu, Mark S. Neubauer, Scarlet Norberg, Alexx Perloff, Marcel Rieger, Claire Savard, Kazuhiro Terao, Savannah Thais, Avik Roy, Jean-Roch Vlimant, Grigorios Chachamis

Figure 1 for Data Science and Machine Learning in Education
Viaarxiv icon

Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders

Mar 01, 2022
Mary Touranakou, Nadezda Chernyavskaya, Javier Duarte, Dimitrios Gunopulos, Raghav Kansal, Breno Orzari, Maurizio Pierini, Thiago Tomei, Jean-Roch Vlimant

Figure 1 for Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
Figure 2 for Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
Figure 3 for Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
Figure 4 for Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
Viaarxiv icon

Machine Learning for Particle Flow Reconstruction at CMS

Mar 01, 2022
Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone

Figure 1 for Machine Learning for Particle Flow Reconstruction at CMS
Viaarxiv icon

Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance

Nov 24, 2021
Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier Duarte, Sukanya Krishna, Farouk Mokhtar, Jean-Roch Vlimant, Maurizio Pierini

Figure 1 for Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
Figure 2 for Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
Viaarxiv icon

Explaining machine-learned particle-flow reconstruction

Nov 24, 2021
Farouk Mokhtar, Raghav Kansal, Daniel Diaz, Javier Duarte, Joosep Pata, Maurizio Pierini, Jean-Roch Vlimant

Figure 1 for Explaining machine-learned particle-flow reconstruction
Figure 2 for Explaining machine-learned particle-flow reconstruction
Figure 3 for Explaining machine-learned particle-flow reconstruction
Figure 4 for Explaining machine-learned particle-flow reconstruction
Viaarxiv icon

Applications and Techniques for Fast Machine Learning in Science

Oct 25, 2021
Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, Ashish Sharma, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng

Figure 1 for Applications and Techniques for Fast Machine Learning in Science
Figure 2 for Applications and Techniques for Fast Machine Learning in Science
Figure 3 for Applications and Techniques for Fast Machine Learning in Science
Figure 4 for Applications and Techniques for Fast Machine Learning in Science
Viaarxiv icon

Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction

Sep 26, 2021
Cenk Tüysüz, Carla Rieger, Kristiane Novotny, Bilge Demirköz, Daniel Dobos, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant, Richard Forster

Figure 1 for Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
Figure 2 for Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
Figure 3 for Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
Figure 4 for Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
Viaarxiv icon