Alert button
Picture for Jakub M. Tomczak

Jakub M. Tomczak

Alert button

Attention-based Multi-instance Mixed Models

Add code
Bookmark button
Alert button
Nov 04, 2023
Jan P. Engelmann, Alessandro Palma, Jakub M. Tomczak, Fabian J Theis, Francesco Paolo Casale

Viaarxiv icon

De Novo Drug Design with Joint Transformers

Add code
Bookmark button
Alert button
Oct 03, 2023
Adam Izdebski, Ewelina Weglarz-Tomczak, Ewa Szczurek, Jakub M. Tomczak

Viaarxiv icon

Exploring Continual Learning of Diffusion Models

Add code
Bookmark button
Alert button
Mar 27, 2023
Michał Zając, Kamil Deja, Anna Kuzina, Jakub M. Tomczak, Tomasz Trzciński, Florian Shkurti, Piotr Miłoś

Figure 1 for Exploring Continual Learning of Diffusion Models
Figure 2 for Exploring Continual Learning of Diffusion Models
Figure 3 for Exploring Continual Learning of Diffusion Models
Figure 4 for Exploring Continual Learning of Diffusion Models
Viaarxiv icon

Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders

Add code
Bookmark button
Alert button
Feb 20, 2023
Anna Kuzina, Jakub M. Tomczak

Figure 1 for Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders
Figure 2 for Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders
Figure 3 for Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders
Figure 4 for Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders
Viaarxiv icon

Learning Data Representations with Joint Diffusion Models

Add code
Bookmark button
Alert button
Jan 31, 2023
Kamil Deja, Tomasz Trzcinski, Jakub M. Tomczak

Figure 1 for Learning Data Representations with Joint Diffusion Models
Figure 2 for Learning Data Representations with Joint Diffusion Models
Figure 3 for Learning Data Representations with Joint Diffusion Models
Figure 4 for Learning Data Representations with Joint Diffusion Models
Viaarxiv icon

Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN

Add code
Bookmark button
Alert button
Jan 25, 2023
David M. Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn, Jan-Jakob Sonke

Figure 1 for Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN
Figure 2 for Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN
Figure 3 for Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN
Figure 4 for Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN
Viaarxiv icon

A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference

Add code
Bookmark button
Alert button
Dec 23, 2022
Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van Harmelen, Annette ten Teije

Figure 1 for A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
Figure 2 for A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
Figure 3 for A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
Figure 4 for A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
Viaarxiv icon

Towards a General Purpose CNN for Long Range Dependencies in $\mathrm{N}$D

Add code
Bookmark button
Alert button
Jun 07, 2022
David W. Romero, David M. Knigge, Albert Gu, Erik J. Bekkers, Efstratios Gavves, Jakub M. Tomczak, Mark Hoogendoorn

Figure 1 for Towards a General Purpose CNN for Long Range Dependencies in $\mathrm{N}$D
Figure 2 for Towards a General Purpose CNN for Long Range Dependencies in $\mathrm{N}$D
Figure 3 for Towards a General Purpose CNN for Long Range Dependencies in $\mathrm{N}$D
Figure 4 for Towards a General Purpose CNN for Long Range Dependencies in $\mathrm{N}$D
Viaarxiv icon

On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models

Add code
Bookmark button
Alert button
May 31, 2022
Kamil Deja, Anna Kuzina, Tomasz Trzciński, Jakub M. Tomczak

Figure 1 for On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
Figure 2 for On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
Figure 3 for On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
Figure 4 for On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
Viaarxiv icon

Defending Variational Autoencoders from Adversarial Attacks with MCMC

Add code
Bookmark button
Alert button
Mar 18, 2022
Anna Kuzina, Max Welling, Jakub M. Tomczak

Figure 1 for Defending Variational Autoencoders from Adversarial Attacks with MCMC
Figure 2 for Defending Variational Autoencoders from Adversarial Attacks with MCMC
Figure 3 for Defending Variational Autoencoders from Adversarial Attacks with MCMC
Figure 4 for Defending Variational Autoencoders from Adversarial Attacks with MCMC
Viaarxiv icon