for the ALICE collaboration
Abstract:In High Energy Physics simulations play a crucial role in unraveling the complexities of particle collision experiments within CERN's Large Hadron Collider. Machine learning simulation methods have garnered attention as promising alternatives to traditional approaches. While existing methods mainly employ Variational Autoencoders (VAEs) or Generative Adversarial Networks (GANs), recent advancements highlight the efficacy of diffusion models as state-of-the-art generative machine learning methods. We present the first simulation for Zero Degree Calorimeter (ZDC) at the ALICE experiment based on diffusion models, achieving the highest fidelity compared to existing baselines. We perform an analysis of trade-offs between generation times and the simulation quality. The results indicate a significant potential of latent diffusion model due to its rapid generation time.
Abstract:Simulating detector responses is a crucial part of understanding the inner-workings of particle collisions in the Large Hadron Collider at CERN. The current reliance on statistical Monte-Carlo simulations strains CERN's computational grid, underscoring the urgency for more efficient alternatives. Addressing these challenges, recent proposals advocate for generative machine learning methods. In this study, we present an innovative deep learning simulation approach tailored for the proton Zero Degree Calorimeter in the ALICE experiment. Leveraging a Generative Adversarial Network model with Selective Diversity Increase loss, we directly simulate calorimeter responses. To enhance its capabilities in modeling a broad range of calorimeter response intensities, we expand the SDI-GAN architecture with additional regularization. Moreover, to improve the spatial fidelity of the generated data, we introduce an auxiliary regressor network. Our method offers a significant speedup when comparing to the traditional Monte-Carlo based approaches.
Abstract:The research of innovative methods aimed at reducing costs and shortening the time needed for simulation, going beyond conventional approaches based on Monte Carlo methods, has been sparked by the development of collision simulations at the Large Hadron Collider at CERN. Deep learning generative methods including VAE, GANs and diffusion models have been used for this purpose. Although they are much faster and simpler than standard approaches, they do not always keep high fidelity of the simulated data. This work aims to mitigate this issue, by providing an alternative solution to currently employed algorithms by introducing the mechanism of control over the generated data properties. To achieve this, we extend the recently introduced CorrVAE, which enables user-defined parameter manipulation of the generated output. We adapt the model to the problem of particle physics simulation. The proposed solution achieved promising results, demonstrating control over the parameters of the generated output and constituting an alternative for simulating the ZDC calorimeter in the ALICE experiment at CERN.
Abstract:The ALICE experiment at the LHC measures properties of the strongly interacting matter formed in ultrarelativistic heavy-ion collisions. Such studies require accurate particle identification (PID). ALICE provides PID information via several detectors for particles with momentum from about 100 MeV/c up to 20 GeV/c. Traditionally, particles are selected with rectangular cuts. Acmuch better performance can be achieved with machine learning (ML) methods. Our solution uses multiple neural networks (NN) serving as binary classifiers. Moreover, we extended our particle classifier with Feature Set Embedding and attention in order to train on data with incomplete samples. We also present the integration of the ML project with the ALICE analysis software, and we discuss domain adaptation, the ML technique needed to transfer the knowledge between simulated and real experimental data.
Abstract:We introduce GUIDE, a novel continual learning approach that directs diffusion models to rehearse samples at risk of being forgotten. Existing generative strategies combat catastrophic forgetting by randomly sampling rehearsal examples from a generative model. Such an approach contradicts buffer-based approaches where sampling strategy plays an important role. We propose to bridge this gap by integrating diffusion models with classifier guidance techniques to produce rehearsal examples specifically targeting information forgotten by a continuously trained model. This approach enables the generation of samples from preceding task distributions, which are more likely to be misclassified in the context of recently encountered classes. Our experimental results show that GUIDE significantly reduces catastrophic forgetting, outperforming conventional random sampling approaches and surpassing recent state-of-the-art methods in continual learning with generative replay.
Abstract:In this work, we introduce a novel method for Particle Identification (PID) within the scope of the ALICE experiment at the Large Hadron Collider at CERN. Identifying products of ultrarelativisitc collisions delivered by the LHC is one of the crucial objectives of ALICE. Typically employed PID methods rely on hand-crafted selections, which compare experimental data to theoretical simulations. To improve the performance of the baseline methods, novel approaches use machine learning models that learn the proper assignment in a classification task. However, because of the various detection techniques used by different subdetectors, as well as the limited detector efficiency and acceptance, produced particles do not always yield signals in all of the ALICE components. This results in data with missing values. Machine learning techniques cannot be trained with such examples, so a significant part of the data is skipped during training. In this work, we propose the first method for PID that can be trained with all of the available data examples, including incomplete ones. Our approach improves the PID purity and efficiency of the selected sample for all investigated particle species.
Abstract:In this work, we introduce Adapt & Align, a method for continual learning of neural networks by aligning latent representations in generative models. Neural Networks suffer from abrupt loss in performance when retrained with additional training data from different distributions. At the same time, training with additional data without access to the previous examples rarely improves the model's performance. In this work, we propose a new method that mitigates those problems by employing generative models and splitting the process of their update into two parts. In the first one, we train a local generative model using only data from a new task. In the second phase, we consolidate latent representations from the local model with a global one that encodes knowledge of all past experiences. We introduce our approach with Variational Auteoncoders and Generative Adversarial Networks. Moreover, we show how we can use those generative models as a general method for continual knowledge consolidation that can be used in downstream tasks such as classification.
Abstract:Bayesian Flow Networks (BFNs) has been recently proposed as one of the most promising direction to universal generative modelling, having ability to learn any of the data type. Their power comes from the expressiveness of neural networks and Bayesian inference which make them suitable in the context of continual learning. We delve into the mechanics behind BFNs and conduct the experiments to empirically verify the generative capabilities on non-stationary data.
Abstract:In this work, we improve the generative replay in a continual learning setting to perform well on challenging scenarios. Current generative rehearsal methods are usually benchmarked on small and simple datasets as they are not powerful enough to generate more complex data with a greater number of classes. We notice that in VAE-based generative replay, this could be attributed to the fact that the generated features are far from the original ones when mapped to the latent space. Therefore, we propose three modifications that allow the model to learn and generate complex data. More specifically, we incorporate the distillation in latent space between the current and previous models to reduce feature drift. Additionally, a latent matching for the reconstruction and original data is proposed to improve generated features alignment. Further, based on the observation that the reconstructions are better for preserving knowledge, we add the cycling of generations through the previously trained model to make them closer to the original data. Our method outperforms other generative replay methods in various scenarios. Code available at https://github.com/valeriya-khan/looking-through-the-past.
Abstract:Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations. The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods. In particular, there exists a demand for a fast simulation of the neutron Zero Degree Calorimeter, where existing Monte Carlo-based methods impose a significant computational burden. We propose an alternative approach to the problem that leverages machine learning. Our solution utilises neural network classifiers and generative models to directly simulate the response of the calorimeter. In particular, we examine the performance of variational autoencoders and generative adversarial networks, expanding the GAN architecture by an additional regularisation network and a simple, yet effective postprocessing step. Our approach increases the simulation speed by 2 orders of magnitude while maintaining the high fidelity of the simulation.