Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Realistic Evaluation of Deep Semi-Supervised Learning Algorithms

Oct 26, 2018
Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, Ian J. Goodfellow

* NIPS 2018 Proceedings 

  Access Paper or Ask Questions

Qualitatively characterizing neural network optimization problems

May 21, 2015
Ian J. Goodfellow, Oriol Vinyals, Andrew M. Saxe


  Access Paper or Ask Questions

On distinguishability criteria for estimating generative models

May 21, 2015
Ian J. Goodfellow

* This version adds a figure that appeared on the poster at ICLR, changes the template to say that the paper was accepted as a workshop contribution (previously it was under a review as a conference submission), and fixes some typos 

  Access Paper or Ask Questions

Explaining and Harnessing Adversarial Examples

Mar 20, 2015
Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy


  Access Paper or Ask Questions

An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks

Mar 04, 2015
Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, Yoshua Bengio


  Access Paper or Ask Questions

On the Challenges of Physical Implementations of RBMs

Oct 24, 2014
Vincent Dumoulin, Ian J. Goodfellow, Aaron Courville, Yoshua Bengio

* Proc. AAAI 2014, pp. 1199-1205 

  Access Paper or Ask Questions

Generative Adversarial Networks

Jun 10, 2014
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio


  Access Paper or Ask Questions

Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

Apr 14, 2014
Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet


  Access Paper or Ask Questions

An empirical analysis of dropout in piecewise linear networks

Jan 02, 2014
David Warde-Farley, Ian J. Goodfellow, Aaron Courville, Yoshua Bengio

* Extensive updates; 8 pages plus acknowledgements/references 

  Access Paper or Ask Questions

Maxout Networks

Sep 20, 2013
Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, Yoshua Bengio

* JMLR WCP 28 (3): 1319-1327, 2013 
* This is the version of the paper that appears in ICML 2013 

  Access Paper or Ask Questions

Pylearn2: a machine learning research library

Aug 20, 2013
Ian J. Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin, Mehdi Mirza, Razvan Pascanu, James Bergstra, Frédéric Bastien, Yoshua Bengio

* 9 pages 

  Access Paper or Ask Questions

Challenges in Representation Learning: A report on three machine learning contests

Jul 01, 2013
Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov, John Park, Radu Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie, Lukasz Romaszko, Bing Xu, Zhang Chuang, Yoshua Bengio

* 8 pages, 2 figures 

  Access Paper or Ask Questions

Joint Training Deep Boltzmann Machines for Classification

May 01, 2013
Ian J. Goodfellow, Aaron Courville, Yoshua Bengio

* Major revision with new techniques and experiments. This version includes new material put on the poster for the ICLR workshop 

  Access Paper or Ask Questions

Piecewise Linear Multilayer Perceptrons and Dropout

Jan 22, 2013
Ian J. Goodfellow


  Access Paper or Ask Questions

Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery

Apr 03, 2012
Ian J. Goodfellow, Aaron Courville, Yoshua Bengio


  Access Paper or Ask Questions