Abstract:Continual learning aims to enable models to acquire new knowledge while retaining previously learned information. Prompt-based methods have shown remarkable performance in this domain; however, they typically rely on key-value pairing, which can introduce inter-task interference and hinder scalability. To overcome these limitations, we propose a novel approach employing task-specific Prompt-Prototype (ProP), thereby eliminating the need for key-value pairs. In our method, task-specific prompts facilitate more effective feature learning for the current task, while corresponding prototypes capture the representative features of the input. During inference, predictions are generated by binding each task-specific prompt with its associated prototype. Additionally, we introduce regularization constraints during prompt initialization to penalize excessively large values, thereby enhancing stability. Experiments on several widely used datasets demonstrate the effectiveness of the proposed method. In contrast to mainstream prompt-based approaches, our framework removes the dependency on key-value pairs, offering a fresh perspective for future continual learning research.
Abstract:Sparse neural systems are gaining traction for efficient continual learning due to their modularity and low interference. Architectures such as Sparse Distributed Memory Multi-Layer Perceptrons (SDMLP) construct task-specific subnetworks via Top-K activation and have shown resilience against catastrophic forgetting. However, their rigid modularity limits cross-task knowledge reuse and leads to performance degradation under high sparsity. We propose Selective Subnetwork Distillation (SSD), a structurally guided continual learning framework that treats distillation not as a regularizer but as a topology-aligned information conduit. SSD identifies neurons with high activation frequency and selectively distills knowledge within previous Top-K subnetworks and output logits, without requiring replay or task labels. This enables structural realignment while preserving sparse modularity. Experiments on Split CIFAR-10, CIFAR-100, and MNIST demonstrate that SSD improves accuracy, retention, and representation coverage, offering a structurally grounded solution for sparse continual learning.