Abstract:Long-term memory mechanisms enable Large Language Models (LLMs) to maintain continuity and personalization across extended interaction lifecycles, but they also introduce new and underexplored risks related to fairness. In this work, we study how implicit bias, defined as subtle statistical prejudice, accumulates and propagates within LLMs equipped with long-term memory. To support systematic analysis, we introduce the Decision-based Implicit Bias (DIB) Benchmark, a large-scale dataset comprising 3,776 decision-making scenarios across nine social domains, designed to quantify implicit bias in long-term decision processes. Using a realistic long-horizon simulation framework, we evaluate six state-of-the-art LLMs integrated with three representative memory architectures on DIB and demonstrate that LLMs' implicit bias does not remain static but intensifies over time and propagates across unrelated domains. We further analyze mitigation strategies and show that a static system-level prompting baseline provides limited and short-lived debiasing effects. To address this limitation, we propose Dynamic Memory Tagging (DMT), an agentic intervention that enforces fairness constraints at memory write time. Extensive experimental results show that DMT substantially reduces bias accumulation and effectively curtails cross-domain bias propagation.
Abstract:Legal judgment generation is a critical task in legal intelligence. However, existing research in legal judgment generation has predominantly focused on first-instance trials, relying on static fact-to-verdict mappings while neglecting the dialectical nature of appellate (second-instance) review. To address this, we introduce AppellateGen, a benchmark for second-instance legal judgment generation comprising 7,351 case pairs. The task requires models to draft legally binding judgments by reasoning over the initial verdict and evidentiary updates, thereby modeling the causal dependency between trial stages. We further propose a judicial Standard Operating Procedure (SOP)-based Legal Multi-Agent System (SLMAS) to simulate judicial workflows, which decomposes the generation process into discrete stages of issue identification, retrieval, and drafting. Experimental results indicate that while SLMAS improves logical consistency, the complexity of appellate reasoning remains a substantial challenge for current LLMs. The dataset and code are publicly available at: https://anonymous.4open.science/r/AppellateGen-5763.