Abstract:Reinforcement learning (RL), particularly GRPO, improves image generation quality significantly by comparing the relative performance of images generated within the same group. However, in the later stages of training, the model tends to produce homogenized outputs, lacking creativity and visual diversity, which restricts its application scenarios. This issue can be analyzed from both reward modeling and generation dynamics perspectives. First, traditional GRPO relies on single-sample quality as the reward signal, driving the model to converge toward a few high-reward generation modes while neglecting distribution-level diversity. Second, conventional GRPO regularization neglects the dominant role of early-stage denoising in preserving diversity, causing a misaligned regularization budget that limits the achievable quality--diversity trade-off. Motivated by these insights, we revisit the diversity degradation problem from both reward modeling and generation dynamics. At the reward level, we propose a distributional creativity bonus based on semantic grouping. Specifically, we construct a distribution-level representation via spectral clustering over samples generated from the same caption, and adaptively allocate exploratory rewards according to group sizes to encourage the discovery of novel visual modes. At the generation level, we introduce a structure-aware regularization, which enforces stronger early-stage constraints to preserve diversity without compromising reward optimization efficiency. Experiments demonstrate that our method achieves a 13\%--18\% improvement in semantic diversity under matched quality scores, establishing a new Pareto frontier between image quality and diversity for GRPO-based image generation.
Abstract:Recently, GRPO-based reinforcement learning has shown remarkable progress in optimizing flow-matching models, effectively improving their alignment with task-specific rewards. Within these frameworks, the policy update relies on importance-ratio clipping to constrain overconfident positive and negative gradients. However, in practice, we observe a systematic shift in the importance-ratio distribution-its mean falls below 1 and its variance differs substantially across timesteps. This left-shifted and inconsistent distribution prevents positive-advantage samples from entering the clipped region, causing the mechanism to fail in constraining overconfident positive updates. As a result, the policy model inevitably enters an implicit over-optimization stage-while the proxy reward continues to increase, essential metrics such as image quality and text-prompt alignment deteriorate sharply, ultimately making the learned policy impractical for real-world use. To address this issue, we introduce GRPO-Guard, a simple yet effective enhancement to existing GRPO frameworks. Our method incorporates ratio normalization, which restores a balanced and step-consistent importance ratio, ensuring that PPO clipping properly constrains harmful updates across denoising timesteps. In addition, a gradient reweighting strategy equalizes policy gradients over noise conditions, preventing excessive updates from particular timestep regions. Together, these designs act as a regulated clipping mechanism, stabilizing optimization and substantially mitigating implicit over-optimization without relying on heavy KL regularization. Extensive experiments on multiple diffusion backbones (e.g., SD3.5M, Flux.1-dev) and diverse proxy tasks demonstrate that GRPO-Guard significantly reduces over-optimization while maintaining or even improving generation quality.