Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems

Sep 04, 2019
Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, Jiyan Yang

* 20 pages, 11 figures, 4 tables 

  Access Paper or Ask Questions

Deep Learning Recommendation Model for Personalization and Recommendation Systems

May 31, 2019
Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, Misha Smelyanskiy

* 10 pages, 6 figures 

  Access Paper or Ask Questions

A Progressive Batching L-BFGS Method for Machine Learning

May 30, 2018
Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, Ping Tak Peter Tang

* ICML 2018. 25 pages, 17 figures, 2 tables 

  Access Paper or Ask Questions

A Primer on Coordinate Descent Algorithms

Jan 12, 2017
Hao-Jun Michael Shi, Shenyinying Tu, Yangyang Xu, Wotao Yin


  Access Paper or Ask Questions

Practical Algorithms for Learning Near-Isometric Linear Embeddings

Apr 22, 2016
Jerry Luo, Kayla Shapiro, Hao-Jun Michael Shi, Qi Yang, Kan Zhu


  Access Paper or Ask Questions