Abstract:In vision domain, large-scale natural datasets typically exhibit long-tailed distribution which has large class imbalance between head and tail classes. This distribution poses difficulty in learning good representations for tail classes. Recent developments have shown good long-tailed model can be learnt by decoupling the training into representation learning and classifier balancing. However, these works pay insufficient consideration on the long-tailed effect on representation learning. In this work, we propose interpolative centroid contrastive learning (ICCL) to improve long-tailed representation learning. ICCL interpolates two images from a class-agnostic sampler and a class-aware sampler, and trains the model such that the representation of the interpolative image can be used to retrieve the centroids for both source classes. We demonstrate the effectiveness of our approach on multiple long-tailed image classification benchmarks. Our result shows a significant accuracy gain of 2.8% on the iNaturalist 2018 dataset with a real-world long-tailed distribution.
Abstract:3D pose transfer is one of the most challenging 3D generation tasks. It aims to transfer the pose of a source mesh to a target mesh and keep the identity (e.g., body shape) of the target mesh. Some previous works require key point annotations to build reliable correspondence between the source and target meshes, while other methods do not consider any shape correspondence between sources and targets, which leads to limited generation quality. In this work, we propose a correspondence-refinement network to help the 3D pose transfer for both human and animal meshes. The correspondence between source and target meshes is first established by solving an optimal transport problem. Then, we warp the source mesh according to the dense correspondence and obtain a coarse warped mesh. The warped mesh will be better refined with our proposed Elastic Instance Normalization, which is a conditional normalization layer and can help to generate high-quality meshes. Extensive experimental results show that the proposed architecture can effectively transfer the poses from source to target meshes and produce better results with satisfied visual performance than state-of-the-art methods.
Abstract:Food is significant to human daily life. In this paper, we are interested in learning structural representations for lengthy recipes, that can benefit the recipe generation and food retrieval tasks. We mainly investigate an open research task of generating cooking instructions based on food images and ingredients, which is similar to the image captioning task. However, compared with image captioning datasets, the target recipes are lengthy paragraphs and do not have annotations on structure information. To address the above limitations, we propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task. Our approach brings together several novel ideas in a systematic framework: (1) exploiting an unsupervised learning approach to obtain the sentence-level tree structure labels before training; (2) generating trees of target recipes from images with the supervision of tree structure labels learned from (1); and (3) integrating the inferred tree structures into the recipe generation procedure. Our proposed model can produce high-quality and coherent recipes, and achieve the state-of-the-art performance on the benchmark Recipe1M dataset. We also validate the usefulness of our learned tree structures in the food cross-modal retrieval task, where the proposed model with tree representations can outperform state-of-the-art benchmark results.
Abstract:Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data. Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios. It is therefore tricky to decide which learning strategies to use under different task conditions. Inspired by the recent success in Automated Machine Learning literature (AutoML), in this paper, we present Meta Navigator, a framework that attempts to solve the aforementioned limitation in few-shot learning by seeking a higher-level strategy and proffer to automate the selection from various few-shot learning designs. The goal of our work is to search for good parameter adaptation policies that are applied to different stages in the network for few-shot classification. We present a search space that covers many popular few-shot learning algorithms in the literature and develop a differentiable searching and decoding algorithm based on meta-learning that supports gradient-based optimization. We demonstrate the effectiveness of our searching-based method on multiple benchmark datasets. Extensive experiments show that our approach significantly outperforms baselines and demonstrates performance advantages over many state-of-the-art methods. Code and models will be made publicly available.
Abstract:Real-world visual recognition problems often exhibit long-tailed distributions, where the amount of data for learning in different categories shows significant imbalance. Standard classification models learned on such data distribution often make biased predictions towards the head classes while generalizing poorly to the tail classes. In this paper, we present two effective modifications of CNNs to improve network learning from long-tailed distribution. First, we present a Class Activation Map Calibration (CAMC) module to improve the learning and prediction of network classifiers, by enforcing network prediction based on important image regions. The proposed CAMC module highlights the correlated image regions across data and reinforces the representations in these areas to obtain a better global representation for classification. Furthermore, we investigate the use of normalized classifiers for representation learning in long-tailed problems. Our empirical study demonstrates that by simply scaling the outputs of the classifier with an appropriate scalar, we can effectively improve the classification accuracy on tail classes without losing the accuracy of head classes. We conduct extensive experiments to validate the effectiveness of our design and we set new state-of-the-art performance on five benchmarks, including ImageNet-LT, Places-LT, iNaturalist 2018, CIFAR10-LT, and CIFAR100-LT.
Abstract:We address the challenging task of few-shot segmentation in this work. It is essential for few-shot semantic segmentation to fully utilize the support information. Previous methods typically adapt masked average pooling over the support feature to extract the support clues as a global vector, usually dominated by the salient part and loses some important clues. In this work, we argue that every support pixel's information is desired to be transferred to all query pixels and propose a Correspondence Matching Network (CMNet) with an Optimal Transport Matching module to mine out the correspondence between the query and support images. Besides, it is important to fully utilize both local and global information from the annotated support images. To this end, we propose a Message Flow module to propagate the message along the inner-flow within the same image and cross-flow between support and query images, which greatly help enhance the local feature representations. We further address the few-shot segmentation as a multi-task learning problem to alleviate the domain gap issue between different datasets. Experiments on PASCAL VOC 2012, MS COCO, and FSS-1000 datasets show that our network achieves new state-of-the-art few-shot segmentation performance.
Abstract:With the development of Generative Adversarial Network, image-based virtual try-on methods have made great progress. However, limited work has explored the task of video-based virtual try-on while it is important in real-world applications. Most existing video-based virtual try-on methods usually require clothing templates and they can only generate blurred and low-resolution results. To address these challenges, we propose a Memory-based Video virtual Try-On Network (MV-TON), which seamlessly transfers desired clothes to a target person without using any clothing templates and generates high-resolution realistic videos. Specifically, MV-TON consists of two modules: 1) a try-on module that transfers the desired clothes from model images to frame images by pose alignment and region-wise replacing of pixels; 2) a memory refinement module that learns to embed the existing generated frames into the latent space as external memory for the following frame generation. Experimental results show the effectiveness of our method in the video virtual try-on task and its superiority over other existing methods.
Abstract:Weakly supervised image segmentation trained with image-level labels usually suffers from inaccurate coverage of object areas during the generation of the pseudo groundtruth. This is because the object activation maps are trained with the classification objective and lack the ability to generalize. To improve the generality of the objective activation maps, we propose a region prototypical network RPNet to explore the cross-image object diversity of the training set. Similar object parts across images are identified via region feature comparison. Object confidence is propagated between regions to discover new object areas while background regions are suppressed. Experiments show that the proposed method generates more complete and accurate pseudo object masks, while achieving state-of-the-art performance on PASCAL VOC 2012 and MS COCO. In addition, we investigate the robustness of the proposed method on reduced training sets.
Abstract:Video captioning targets interpreting the complex visual contents as text descriptions, which requires the model to fully understand video scenes including objects and their interactions. Prevailing methods adopt off-the-shelf object detection networks to give object proposals and use the attention mechanism to model the relations between objects. They often miss some undefined semantic concepts of the pretrained model and fail to identify exact predicate relationships between objects. In this paper, we investigate an open research task of generating text descriptions for the given videos, and propose Cross-Modal Graph (CMG) with meta concepts for video captioning. Specifically, to cover the useful semantic concepts in video captions, we weakly learn the corresponding visual regions for text descriptions, where the associated visual regions and textual words are named cross-modal meta concepts. We further build meta concept graphs dynamically with the learned cross-modal meta concepts. We also construct holistic video-level and local frame-level video graphs with the predicted predicates to model video sequence structures. We validate the efficacy of our proposed techniques with extensive experiments and achieve state-of-the-art results on two public datasets.
Abstract:In this work, we address the challenging task of few-shot segmentation. Previous few-shot segmentation methods mainly employ the information of support images as guidance for query image segmentation. Although some works propose to build cross-reference between support and query images, their extraction of query information still depends on the support images. We here propose to extract the information from the query itself independently to benefit the few-shot segmentation task. To this end, we first propose a prior extractor to learn the query information from the unlabeled images with our proposed global-local contrastive learning. Then, we extract a set of predetermined priors via this prior extractor. With the obtained priors, we generate the prior region maps for query images, which locate the objects, as guidance to perform cross interaction with support features. In such a way, the extraction of query information is detached from the support branch, overcoming the limitation by support, and could obtain more informative query clues to achieve better interaction. Without bells and whistles, the proposed approach achieves new state-of-the-art performance for the few-shot segmentation task on PASCAL-5$^{i}$ and COCO datasets.